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ABSTRACT. When a point of the curve is dragged to another
position, a local curve segment is affected, whose size could be
determined by propagating the deformation on lower resolution
of the curve in multiresolution representation. Therefore, for a
given point displacement, different relative local segments can be
modified, by varying local parameters given by a function which
simulates a stiffness constant. Using this method, the designer
can imeractively modify the curve, in a natural manner, by con-
trolling the size of the affected segment, avoiding the use of energy
terms for deformation. We have tested our ideas with a prototype
system for modeling uniform B-gpline curves in multiresolution,
~ using biorthogonal B-spline wavelsts.

1. INTRODUCTION

Free deformations tools are necessary in many geometric modeling sys-
tems, because, often, one needs to model objects having complex shapes,
usually obtained by maaipulating some region of the object. By deforming
existing objects, the designer can obtain, in a natural manner, the desired
shape. So, he may wish to modify a region superficially only. Or, he may in-
tend to modify a small region, in order to simulate the behavior of an elastic
material. He may also wish to make a large modification in the vicinity of a
point, sinrulating a metallic material {such as a wire) with a given stiffness.

Recent work in interactive modelling has provided tools for the deforma-
tion of objects based on different approaches, but do not solve the problem
completely. Control point manipulation [12, 2] is inappropriate, because the
user does not know how to move control points in order to obtain a desired
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form. The same problem is found in knot point operations in B-splines ob-
jects [4, 12, 11]. These techniques solve the problem through very tedious
work. Direct manipulation techniques [1, 5, 6] allow for the intuitive de-
formation of objects, with implicit movement of control points, caused by
direct edits of points on objects, but do not provide ways to control the
region affected by the deformation. The imteractive deformation based on
variational theory [19, 20] is another alternative shape design, that works
by minimizing the function energy. Variational design using multiresolu-
tion theory [16, 17] is a technique for controlling the smoothness of objects
editing the effects at continuous levels. In these cases, the solution involves
the manipulation of energy functions. Realistic effects are obtained using
physics-based deformation of objects [8], but it is difficult fo determine the
adequate force for a desired deformation.

We formulate a new approach to manipulate the shape of objects (2D
curves), controlling a local attribute that determines the size of the segment
to be modified. We employ direct manipulation techniques to produce a local
deformation on segments of a multiresolution representation, in such a way
that the movement of control points will depend on the degree of deformation
determined by the designer. For that, the section 2 is dedicated to a review of
theory, focusing on multiresolution curve representation using biorthogonal
wavelets. Section 3 treats the direct manipulation of multiresolution curves;
for that, we define local deformations applied to a multiresolution curve. In
section 4, we formulate the technique to control the deformation through
low-regolution coefficients. In section 5, we define the distribution function
that permits the distribution of displacement segments in all low-resolution
coefficients, and Section 6 concludes this paper with a summary of results
and future research directions.

2. REPRESENTATION AND MULTIRRESOLUTION OF CURVES.

In this section, we present the framework for multiresolution curve repre-
sentation, using B-gplines bases.

2.1. B-spline curves
The B-splines basis functions, NF(t), of order &, are defined by

e 1 iz <t <z
N; (1) _{ ¢ otherwise

and

(t-INF'0) | (ess —ONE' @)
Tivk—1 — T4 Tigg = Tit1

(2.1) NE(t) =

The values z;, known as knois, are elements of the knot vector X, with
Ti € Tigl
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Al points of a curve segment ; are generated by k basis function with
k constant control points (5, by only varying the parameter ¢ in a domain
interval, For that, we use the basis function reparameterized to the interval
[3,1), because the uniform periodic B-spline basis functions, used in this
work, are all translates of each other and have the same form on each interval.
See figure 1. -
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Figure 1. Periodic uniform cubic B-spline basis functions

The 7 th segment of an uniform periodic B-spline curve of order & is defined
as

2.2) | £i(8) = M*(£).05,

where each columm of the matrix N*(#} is formed by coefficients of the
reparameterized basis function N (1), 0 < r € 3, to the interval [0,1) (see
[13] for more detail): Especifically for k& = 4, the matrix expression of the
reparameterized basis function is

-1
(2.3) R = %{;3 peg| 3 -
| 1

D oh w
Ll - 0 L
e R e B ]

To make a segment of curve f;(t), according to expression (2}, the co-
efficient matrix columns are C; = [¢j—1 ¢j ¢j41 ci2]”, and the basis is
N4(t) = [Ng(2) N{{2) Nj@) N3 (0)]. - |

2.'2 Maultiresolution curve

We use the multiresolution curve representation as presented in [3, 14], built
from B-spline wavelets, because it provides effective hierarchical representa-
tion of curves. However, we use biorthogonal wavelets instead of orthogonal
ar semi-orthogonal wavelets,

Let f{f) be a curve with 2® control points in column matrix " =
[cf e ¢ ... Ga_,]”, where each element c*eR?, ie. c? = (z,,y,). For
a multiresolution representation of the curve, we denote by f"(t) the re-
fined curve, where n represents the highest-resolution level, whereas f7{t),
for 3 < n, corresponds to low-resolution representations of the curve.

2.2.1 B-spline wavelets and curves in multiresolution
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In order to decompose a curve f/ into a low-resclution curve f7~! and &
difference curve o’ ~! it is necessary to use some form of linear filtering and
down-sampling on the entries of C7, which are the control points of f7,
to ‘ot;tain the low-resclution scaling coefficients C7-! and detail coefficients
D=3,

The coefficients C7=1 are obtained by using a scaling filter matriz A7, such
that €9~ = 4909, and D! are obtained by using a detail filter matriz
BI (DI~ = BiCY). Both matrices, 47 and B, are known as analysis filter
matrices. For constructing the object from their multiresolution coefficients,
we uselthe sgmtlxes:s filter mairices P7 and @', such that C7 = PIiCi—t 4
QDI

The curve f7 is represented by the linear sum of the scaling basis function
®7(t) with the scaling coefficients C7: as in (2.2), we have fi{t) = ¥¥(1)C7,
where the vector ®7(¢) = [#(t),.- .45 {£)] contains the basis functions of
space Vi, In this case, each ¢i(t) is a cubic B-spline function. The oi(t)

wavelets T3-1(t) are the basis function of spa.oe Wit , and are related with
&7 by the matrix Q7 satisfying ¥/-1(t) = ().

When W7/~! ig the orthogonal complement of V7! in V¥, ®/-1(t) are
orthogonal wavelets. The spaces {V7}, such that ... ¢ V-1 ¢ V¥ C
define the mulliresolution analysis of f.

2.2.2 Biorthogonal wavelets

Biorthngonal wavelets are a generalization of orthogonal wavelets; they have
some attributes of orthogonal! wavelets and are more flexibhle. These at-
tributes are essencial {0 express geometric cbjects in multiresolution and
their manipulations with the fast transformation using B-splines basis fune-
tions.

In biorthogonal multiresolution, biorthogonal bases are used in place of
orthogonal bases: one basis is used for analysis and another for synthesis.
For analysis, to calculate O7~! and D7~ the primal basis &' and ¥ are
used, respectively; for synthesis, the duai basis & and U7 are used. The
functions ¥/ and @3 are basis of spaces V7 and V3, respectively; on the
other hand, ¥/ and U7 are basis of W7 and W-T respectively. So, we have
two multxres&iutmn spaces

wCeVitevic,, and VIl ViC L,

with Vi~ £ Wi~1 — V7 and V9! + W71 = V9, Orthogonality is enforced
between primal and dual basis (for more detail, see [14, 7, 15]).

_ A scaling function ¢} (1) is defined by shifting and scaling a siugle function
¢{1}, called mother function. In general, it is expressed as ¢4(1} = $(27t —3).
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The refinement of a scaling function and a wavelet fanction could be
rewritten as

$(t) =3 hm(2t = m) and ${t) = ¥ gu(2t — m).

Similarly, the dual basis functions are expressed by 'using the dual mother
function §(t), 2 |

#(t) = Zﬁmﬂzt m) and wb{t) ngm: m).

Finally, considering the orthogonality condition of the basm one obtains the
relation between coefficients and filters, for decomposition:

(2.4) =Y hy-smi* and i, = Zya;zmci+*= |
& . £

and for reconstruction:

(2.5} | gt = Zﬁmmﬁ + E'%—adi-

Observe that, in the eomputat.lon of coefficients ¢ a.nd &, we capture
clomeunts relative to even positions (2m) of C7+!. This means that, in each
decomposition recursion, half the number of elementis of C7*! are generated.
The filter coefficients, which are entries of matrices 4, B, P and ¢}, can be
computed using a formulation in the frequency domain [7] or in the spatial
domain {15]. They can be interchanged, so they can be used for analysis or
synthesis.

For the nnpiementatlon of (4) and (5), we use the fast wavelet transform
7. .
3. DIRECT MANIOPULATION OF MULTIRESOLUTION

CURVES
It is possible to modify interactively a curve segment by moving one point to
a target position. This can be done by moving the & corresponding control
points, that influence a total of k + (k — 1) segments. To compute the
movermnent of k control points of B-splines curves we use results from Bartels
and Beaty {1}, and Bartels and Fowler [5].

The operation consists in computing the variation Ac;.i_; of the control
point {¢;.4i—1}i=0,...k—1 relative to curve segment j,

(3.1} ﬁcj.},,_.l == ﬁf, {f)ﬁm‘—-l—(fl——a
Z(Nf_i(i})z

=0

The basis functions N ,(t) are the same as in (2.3). The new position of
point ¢; -1 i8 given by &1i-1 = Gjyi-1 + Ajpi-1.
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When the control points of the object are very close to each other, the -
effect of the manipulation does not look natural. This effect is a local defor- -
mation, where the manipulation of one point affects only a small segment
influenced by & control points.

In order to exiend the deformation to a larger segment, one needs to
modify s larger number of control points. Care must be taken, however, to
do s0 in such a way that the resulting deformation looks natural. Multires-
olution representations provide an adequate framework to achieve this goal.
In this approach, as described below, we gtill adjust only one curve segment
{controlled by k control points} at a time, but this is done over the different
representation levels. ‘Controlling the amount of change at each level makes
the deformation more or less global.

3.1 Maaipulation in decomposition process

Here, we use the ideas on multiresolution curve editing, described briefly
in {3, 10]. Im order to make some modification of the curve shape using
jocal deformation in muitiresolution representation, we manipulate all Iow-
resolution coefficients. The amount, of change varies according to the resolu-
tion level. These modifications will be propagated to the highest-resolution
carve after the reconstruction process.

The deformation of the curve f™ can be controlled by suitably propagating
to all low-resolution curves the displacement vector Ad of a point f*(t). I
Ad; is the corresponding displacement applied to 3 point ef J7 relative of
the point f7(z), the resulting low-resolution curve will be fi=f+Afp
The Ad; is determined from Ad by a distribution function defined in section
5. The modified curve, 7, affects low and high-resolution levels, When the
modification is made in the decompogition process, the coefficients generated
from this modified curve include these variations,

Given the refined curve control points C", the method consists of applying
s local deformation, Ady,, to obtain C™ = C™ + AC™. These new elements
will be different to the ones obtained by reconstruction, because the lower -
level elements are also modified locally. }z; general, we could denote the
scaling coefficients to be decomposed by Cﬂ and the reconstruction result
by 2. After decomposing O" we obtain C7~! and D7-!, We then apply
local change to obtain C’ -1 and D” This process is applied recursively
down to level m (xmmmum level permltt.ed for decomposition). When v is
modified in ACY, detail orientations are updated in ADJ. When m = 2, for
example, the process iz as follows:

Modification: (7" c"* + AC“
Decomposition: {?"‘ =Rt 4 A’*AC‘“
D" L= pn-1l 4 BRACH.
Modification: CT-! = C"~1 + APAC™! + AMAC™ + A(A"AA"),
B"“ = D" 4+ BPAC™! + BEAC™ + A(B*AC™).
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After the first stage of modifications and decompositions, we reconstruet
recursively the curve. In this second stage, it is necessary, prior to each

reconstruction, to convert each detail coefficient from the local coordinate

system to a global coordinate system as detailed in section 3.3. Having bath
elements expressed in the same gystem, we can then reconstruct the curve
as .

c}'f'l PJ-H.C} + Q}-PiDj
Finally, we obtain the highest resolution coeficients a
Cr =C"+AC™ + A,C™

- where A,C™ is. the projection on level n of all variations in lower lev-
els. Oons:dermg m = 2, in the sequence of deformation and decomposition
above, the reconstruction is

cr = pﬂc’*— +qQrogt
= (™ 4+ AC"+ PPAC™ 4 Q"AC‘““
+PrA(AMAC™) + QPA(B™ACT)
. Finally, the modified curve is
f" = P[C™ + AC™ + PPAC™T ! + Q"AC™ ! +
+PRA{AACT™) + QRA(BRACT™)]
= [T+ A" +projeA " + proja{Aproje-1 A7)
= fP+Af"+ AT,
where Af™ iz the local variation of f® and A, f" is the sum of lowers
variations projected in level n. The proj, Af"~! is the projection of Af™ 1
onto resolution level n,
Figure 2 ilustrate the process described above On the left we see the
effect of applying the deformation only to C™; on the right we show the

deformmation obtained when the respective lower level coefficients are also
modified.

(a) (b)
Figure 2. A curve deformed: {a) modifying only on the highesi-resolution
curve; (b) distributing displacement on three lower-resclution curves.
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3.2 Displacement of points in multiresolution curves )
When the point ["{f} is inoved by Ad, we oblaln its final position f™{t) =
f*(t) + Ad. If the displacement vector Ad is applied in f*~1(t;), the cor-
responding point on f™ is displaced too. The relation between ¢ and ¢, is
explained in section 4.

The relation between points of two levels of resolution could be given by

SN = TR+ (- Mg He),  where D<A S L

So, for one point (¢} and g"~1(t), it is possible to compute f*=*(t) for
0< A<,

Therefore, when a point f*(#;) is displaced in Ad, the corresponding
point on f* is displaced, after reconstruction, in Ad,

A +Ad = O+ A+ (1= Mg ()
2720 = e+ - 0.
In particular, for A = 0, we have
=i+ ghm ),

where we could observe that the segment of the curve projected on level n,
from the curve based on wavelet coefficients, ", is not affected by the dis-
placement of point f7~1{#} by Ad. However, it is necessary to preserve the
original details characteristic of f*, and thus we need to preserve the orig-
inal orientation of the coefficient details, a®~!, affected by the deformation
of f7~L. Section 3.3 gives further details on this.

The effects of the displacement vector, Ad, applied on a point in a low-
resolution curve, as showed above, is formalized by a theorem.

Theorem 1. The point f™{1} displaced by one vector Ad becomes enother
point, p = f*(t) + Ad equivalent to the displacement of f*~1(t,), the pro-
jection of f™t} on f"~', when displaced by the same vector Ad projected
on fr(t).

Proof: Let Ad = Af?(t) be the displacement vector applied onto f™{f). A
function f™ is reconstructed from their low-resolution coefficients as

IR = S W)(PPC™ ! + QDY

If we displace one point onte ™! correspandmg to f*{t}, by Ad, some
relative coefficients of C7~1 are moved as (3.1}, in AC™ 1. After that, the
expression above will be as

fn(t) - (I)"(t) (Pn (Cn_l + Acn—l) +Q"D"’_1) )

e .y, grt
Considering the expression {3.1) as AC™ ! = AdW—— because so &
{curve degree} basis relating to the point are differents from zero (subsection

2.1}; the deformed curve can be rewritten as
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o = 10 (s sagigem) v

T @n—l
= ") (PrC™ 1+ Q"D ) + S P DMy

q,nwl .
@n—l.@n—l

‘I’"’(t) (Pncnml + QnDn—l) + ‘-I"ﬂ—-lAd

= f*(t)+ Ad.
¢ : . :
The theorem 1 is generalized to displace one point on arbitrary low-
resolution curves, f7,7 < n. Another consequence of this theorem refers
to the case in which the displacement vector Ad is segmented in various
vectors, Ad;,Ads,..., Ady,;, and each vector Ad; is applied on a respec-
tive point of low-resolution curves, f/. After reconstruction, the point f™(t)
displaced is the same as f“(t} + Ad. These extensions are formalized by
corollaries.

Corollary 1. If p = f*(t) + Ad iz a displaced point of f*(t) by Ad, the
same effect is obtained by momny F1{t3),0 < 7 < m, corresponding to f"(t),
by Ad.
Proof: The function f* could be expressed using their low-regolution coef-
Acients and alt wavelet coefficients as

n—1

=it + Y WDk

i=F
After the point f7 (i,) is desplaced by Ad, some relative coefficients of 7
are moved as (3.1), resulting, in general in ACY; thus, the expression above
is rewriten as

: n—1
M) = ¥ (T +ac9)+ ) ¥
=3
- . . . u—l .
= (1) + B (HACT + 3 ¥D
i=j
o n—1
= P+ ¥DI+Ad
i=j
= f"(t) +Ad.
o

Corollary 2. The displacement of point f™{t) by Ad is equivalent io p =
(8} + Ad. If Ad is segmented in Adg, Ady, ..., Adm, and each Ad; dis-
places one corresponding point of f*(t) onto low-resolution curves f*~* 0 <
i < m, ench one by time, the point f™(t) is moved to p.
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The proof of the corcllary 2 is immediate. If we displace one point
F*-H{t;), corresponding to f7(t), in Ad; once by each level, the corollary
(1) ensures that f™(t) is moved in Ad;; then, the total amount of displace
ments of f*(t) is Ad = Adp + Ady +... + Ad,y, finally.

The figure 3(a) shows the results of corollary (1) after displacing the point
£5(t) = (333.72,506.37) by Ad = {—19.72,64.62), interior dashed curve.
The curve highest-level is n = 6. When a corresponing peint of f5(¢) on
7% is displaced by Ad, the final position of f8(¢), after recomstruction, is
the same (external dotted curve of the figure). The figure 77(b) shows the
effect after reconstruction when the displacement vector Ad is segmented in
various vectors, Ad;, Ady, Ads and Ady (corollary (2)), and £5(t) displaced
by Ads, f5(€5} by Ada, f'i{té} by Ady and f?'(t;;) by Adgz, as explained in
section 3.1. ‘

(b}

Figure 3. Displacement vector Ad applied onto low-resolution curves: {a)
Effects of displacement point by Ad ento f7(t;),3 < j < 6, once in each
resolution {external dotted curve is after the point f3(¢3) is displaced, the
internal dashed curve is after the point f%(¢)) is displaced; {b) dashed curve
is produced after displacing the segmented vectors, Ad;, Ady, ..., Adpy,
which are applied onto each low-resolution curves, f%, f%, /4 and f3.
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3.3 Orientation of detail

Sines each detail coefficient o} of D7 is cornposed by two elements (Azl, Ayd),
it can be treated as a two-dimensional vector d7. For each & it will be as-
signed a Local Coordinate System (LCS). Any operation with the scaling
coefficients could produce local 0perationa with relative detail coefficients,
such as local rotation.

When an object is deformed, it is necessary to keep detail characteristies
controlling its orientation. In this way a real deformation effect is achieved,
which would be difficult to obtain if the operation of rotation were executed
in the Global Coordinate System (GCS). These principles were suggested in
{14, 3, 4, 18], with different purposes. .

One alternative for the representation of the LCS for each 8} isto use 2
similar method, formmlated by Forsey and Bartels [4], considering the z-axis
tangent to the curve of level 7 — 1 in ¢o, where the wavelets function 1;'1'1 (to)
has the maximum value. In this work, we considered the z-axis of the LCS
of each element &' as being parai]el t.o the edge s of the conirol polygon
of f7-1 formed from point ¢} to ¢f7}. The y-axis is a vector orthogonal
to the edge s.

We use polar coordinates to express detail coefficients, which are com-
puted in each decomposition pmcess- The polar coordinates for det.?.il &1
is compcsed by the pair {rJ" ’_1), where rJ ! is the module of &' and
8~ is the angle formed by 5’ ~! with the z-axis of their LCS. This process
is linear relative to the number of scaling coefficients, so it does not change
the computational complexity of the algorithm.

4. MULTIRESQLUTION DISTRIBUTION OF
DEFORMATIONS

A point on the segment fI influenced by Bl = [c_ | el ¢%,)7, con-
verges, just as the decomposition, to a point of segment f"“l. The relation
between their indices is given by h = {s/2]. This allows us to relate ad-
jacent segments of the same level n with anocther segment of level n — 1.
All points of the segment f?& ~! are influenced by their control point matrix
Bl =[eimiapt cﬁ;f 02;2] . Thus, it is possible to establish recursively
the correspondence between segments and control points of multiresolution
curves. ; "

We show, in figure 6, that the segment fI~' with reference point !
is the convergence segment of the high-level segments fgs and fi,.,, whose
reference points are ¢, and 3,41 Tespectively. The relation between the
control points of €7 and €7~ was established in section 2.2.2, that Shows
how ('17 and its neighbourhood generate ¢} .

To relate the detail coeflicients of leve] § Wlth level § - 1, we can derive
an expression similar to the one obiained for scaling coefficients. Any action
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that affects a point of segment st or fm "y t;rans;mtted to the vicinity of

&1, as its best representative. Detail coeﬁc;ent &1 i3 related with the
scaling coefficient c%, +1- In general, f1 and d’ are related by the index
expression h = |{s + 2)/2].

uuuu
‘‘‘‘

-

Q‘H-b

cht it H i
- C,rvl cunf C‘t

Figure 4. Convergence of curve segments from resolution j to resolution
7 — 1, and the relation of their coefficients.

As two adjacent segme_nts of a level § curve converge to a segment of level
F = 1, the point ps,, = f7(tn,,) and its neighbourhood converges to a point
Py = f*3 l(t‘, }, where the respective local deformation will be applied. The
relation between the index A and s is given by s = |A/2]. The parameter
th,, 18 known, while t,, is calculated by analyzing the convergence relation
of segments from level 7 to j - 1. We compute i,, using the propagation
proportion, because two adjacent segments, even and odd, of f7 converge to
another segment of f7~!. The parameter i,, is calculated as

ts, = th, /2 (h/2 — s}, with s = [A/2],
and the parameter ¢ varies as 0 < {,, < 1 in all segments.

5. DISTRIBUTION FUNCTION FOR DEFORMATION

In this section we discuss how to distribute a certain displacement vector
Ad to all resolution levels of the curve. It is natural that modifications at
higher resolution levels be larger than those at lower levels. An appropriate
way of dealing with this problem is by considering a continuous distribution
function g(t}, defined on [0, 1! {with € corresponding to the highest level and
I to the lowest), such that f; ¢{8¥di = 1. The proportion of displacement
correspanding to level 1 will be given by:
=+t

a4 = [ ™ gt)dt,
£

where m is the number of levels. The displacement applied at level n — §
will be given by

Adi = a,-Ad.
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We adopt the distribution function of the form

A

The parameter w determines how fast the amount of change decreasés_ at
the less refined levels. Figure 5 shows how the choice of w influences the
behavior of the deformation.

1 i
g(f) = e, where A— f e,
g

(b)

{d}
Figure 5. A curve deformed in several ways depending of the weight w
that acts ag the stiffness of the curve. (a) w = 1; (b} w = 3; (¢) w =5; and
(d) w=12.

6. CONCLUSION ANS FUTURE WOHRK

We described a technique for manipulation of multiresolution B-spline curves.
This techmique could be used for direct manipulation of curves and surfaces
represented in multiresolution. A designer, using our method, can model
interactively the curve, by deforming seginents of variable size defined by a
local parameter such as a stiffness constant. In this way, he does not need
to deal with non-intuitive parameters as required by others technigues.
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Our method conserves the initial number of control points, because it does
not use any knot operations. Thus, the same space used to store the control
" poinis are used in the manipulation of the chject in muliiresclution. One
advantage of the wavelet transform is the conservation of the space used in
all decomposition and reconstruction process.

The technique described in this work may be generalized to automatic
deformation of objects, considering the extern agent as a force generated by
collision between objects, as proposed in [9], for physical simulation effects.
Anocther work could be to extent this approach using geometric constraints
formnuled in [5, 6] to obtain deformation of curves with geometric restrictions.
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