Susceptibilidad de la polilla Symmetriscchema tangolias al virus de la granulosila de Phthorimaea operculella (PoVG)

Iván Angeles Riva

Jesus Alcázar Sodano

RESUMEN

ANGELES I, ALCAZAR J. 1996. Susceptibilidad de la polilla Symmetriscchema tangolias al virus de la granulosila de Phthorimaea operculella (PoVG). Rev. per. Ent. 39 — Las arpas de Symmetriscchema tangolias (Gyén) (Lepidoptera: Gelechiidae) provenientes de una crianza masiva fueron colocadas sobre tubérculos de papa previamente sumergidas durante un minuto en concentraciones de 20 a 2000 Equivalentes Larval (EL) del virus PoVG. La concentración letal media (CL₅₀) fue de 146,6 a 164,57 con límites elípticos que van de 68,41 a 396,38 larvas por litro. Las larvas afectadas pueden prolongar su período larval. Esta polilla es susceptible al virus PoVG de una manera no convencional, pues no se ha hallado larvas con síntomas de la enfermedad.

Palabras clave: Polillas de la papa, Symmetriscchema tangolias, virus de la granulosis de Phthorimaea operculella, PoVG, control biológico, Baculovirus.

SUMMARY

ANGELES I, ALCAZAR J. 1996. Susceptibility of the moth Symmetriscchema tangolias to granulosis virus of Phthorimaea operculella (PoVG). Rev. per. Ent. 39 — Potato tubers previously immersed in concentrations from 20 to 2000 Larval Equivalent (LE) were artificially infested with first instar larvae of Symmetriscchema tangolias (Gyén) (Lepidoptera: Gelechiidae) from a mass rearing. The middle lethal concentration (CL₅₀) was 146.6 to 164.57 larvae per liter, with extremes of 68.41 to 396.38. Infected larvae can elongate their larval period. This moth is susceptible to virus on a special way, because we have not found any symptoms of sickness.

Key words: Potato moth, Symmetriscchema tangolias, granulosis virus of Phthorimaea operculella, PoVG, biological control, Baculovirus.

Introducción

Symmetriscchema tangolias (Gyén) (Lepidoptera: Gelechiidae) en los últimos años ha adquirido gran importancia por ser más agresiva que Phthorimaea operculella en la papa. Es considerada plaga clave en almacén, llegando a ocasionar pérdidas mayores al 60% (Alcázar et al. 1982*). Son pocos los estudios relacionados con su control, siendo el método químico el más utilizado; es por ello que resalta la importancia de investigaciones en el control biológico de esta plaga.

Los objetivos del presente trabajo son: (1) determinar el nivel de susceptibilidad de Symmetriscchema tangolias al virus PoVG; y (2) determinar la CL₅₀ con larvas I de la polilla.

Revisión de literatura

Ignooff (1968) y Gröner (1986) consideran que los virus a bajas concentraciones, causan la muerte del insecto nativo donde fue aislado, pero a una mayor concentración pueden causar la muerte de otros insectos, preferentemente de la misma familia. Reed (1971) menciona que cuando se infecta larvas I con un virus y causa una mortalidad violenta, se debe a que el virus actúa como un insensitivo. A este fenómeno se le llama “toxicosis”. Hurst (1984) sostiene que en muchos casos la contaminación de una especie de larva por un virus procedente de otro insecto provoca la virosis por un virus oculto en el insecto y no ligado a la proliferación del virus introducido.
Materiales y métodos

El trabajo se realizó en el Centro Internacional de la Papa (CIP), Lima, Perú.

Criación de S. tangolica

Se trajeron tubérculos infestados desde Huancayo, que fueron acondicionados en recipientes de plástico de 20 x 30 x 9 cm, conteniendo arena en el fondo. Cada semana se extrajeron cocones de la arena de estos recipientes, para ser trasladados a vasos de plástico de 500 ml de capacidad, tapándolos con tela de organza de malla 0.5 mm. Al emerger, las polillas fueron colocadas en una cámara de oviposición. Las posturas se retiraban diariamente y se las separaba para los diferentes trabajos. Para mantener la crianza, se colocaron discos de posturas en los recipientes de plástico de 20 x 30 x 9 cm, con arena en el fondo y se les dejó por espacio de un mes; se revisó la presencia de cocones en la arena y se les retiró a otro recipiente, para poder recolectar a los adultos.

Obtención y multiplicación del virus

El virus de la granulosis se multiplicó siguiendo la metodología ya establecida por el CIP (RAMAN y ALCÁZAR, 1992). Se trabajó con larvas IV de *P. opercularia*, enfermas, con un peso promedio de 0.0152 g ± 0.0091 g.

Preparación de la concentraciones del virus

El método de formulación usado fue el equivalente larval (EL) descrito por AÑOS (1986), por considerarse el más práctico en la cuantificación de las partículas virales. Se realizaron tres ensayos. En el primero se preparó una solución madre con 502 larvas infectadas las cuales se maceraron con ayuda de un mortero y se enrasó a 251 ml de agua destilada; de ella se tomaron 1, 25, 50, 75, y 100 ml y se enrasó con agua destilada hasta llegar a un 100 ml, para tener las concentraciones deseadas, equivalentes a 20, 500, 1,000, 1,500 y 2,000 larvas por litro; al final, a cada dilución se le agregó 0.2 ml de Tritón. Para el segundo ensayo, la solución madre fue de 150 larvas infectadas las cuales se maceraron y se completó a 150 ml de agua destilada; de ella se tomaron 10, 20, 30, 40, y 50 ml y se completó con agua destilada hasta llegar a un 100 ml, para tener las concentraciones deseadas, equivalentes a 100, 200, 300, 400 y 500 larvas por litro; al final, se agregó a cada dilución 0.2 ml de Tritón. Para el tercer ensayo se preparó una sola dilución, macerándose 200 larvas infectadas que se enrasaron en 100 ml de agua destilada para obtener la concentración deseada, equivalente a 2,000 larvas por litro; posteriormente se añadió 0.2 ml de Tritón.

Metodología

Para los dos primeros ensayos se trabajó con larvas I, con cinco tratamientos y un testigo, cada uno con 10 repeticiones. Se seleccionó por cada tratamiento, 10 tubérculos de aproximadamente 15 g, los cuales fueron sumergidos por espacio de un minuto en la solución viral, para obtener una buena cobertura (ALCÁZAR et al., 1992); se les dejó secar a la sombra y luego por separado, se colocaron en un vaso de 500 ml de capacidad, donde se infestó con diez larvas cada uno; se tapó los vasos y se los colocó en una cámara oscura donde permanecieron hasta su evaluación. La evaluación se hizo en el momento en el cual se observó pupas en todos los tratamientos, contándose el número de pupas.

El ensayo con larvas de tercer estádio se trabajó con un testigo y un tratamiento (2,000 EL), con 20 repeticiones cada uno. Se utilizó discos de tubérculos de papa de 1,75 cm de diámetro y 0,235 cm de grosor. Con ayuda de una pinza, se sumergió los discos de papa en la solución viral por espacio de 60 segundos; se les dejó secar y se les trasladó a placas petri que tenían papel filtro seco en el fondo. Posteriormente se colocó una larva III en cada disco; cada dos días se colocó otro disco de papa, no infectado con el virus, en la placa; la evaluación se realizó a las dos semanas, contándose la presencia de pupas.

Análisis de resultados

En las pruebas de susceptibilidad para el análisis de varianza los datos originales del número de larvas muertas sufrieron una transformación cuadrática (CALZADA, 1979). Para la comparación de medias se realizó la prueba de Duncan, a un nivel de significación de 0.05. El cálculo de regresión concentración-mortalidad larval CL₉₀, así como los estimados de sus límites fiduciales, se efectuó siguiendo los cálculos del análisis Probit (BULYNE, 1971).

Resultados y discusión

Cálculo de la Concentración letal media (CL₉₀)

Los resultados de mortalidad del ensayo con dosis de 20 a 2,000 larvas por litro se presentan en el cuadro 1. En la concentración de 20 EL se encontró la menor mortalidad (15.2%) la cual no difiere significativamente con los tubérculos sin tratar, en cambio este promedio sí difiere significativamente de las demás, que van de 78 a 80%.
CUADRO 1. Mortalidad de larvas I de Symmetricschema tanglesa infectadas con el virus de la granulosis de Phthorimaea operculella (PwG). Larvas I alimentadas en tubérculos de papa previamente sumergidos durante 60 segundos en la dilución o concentración viral (20 a 2.000 EL). 100 larvas I por tratamiento. CIP, La Molina, Lima. 1994. Prueba Duncan: P = 0,05.

<table>
<thead>
<tr>
<th>Concentración viral</th>
<th>Larvas muertas</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL* (larvas virales por litro)</td>
<td>Cápsulas</td>
</tr>
<tr>
<td>Testigo</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>6,09 x 10^3</td>
</tr>
<tr>
<td>200</td>
<td>1,81 x 10^4</td>
</tr>
<tr>
<td>1.000</td>
<td>2,06 x 10^4</td>
</tr>
<tr>
<td>2.000</td>
<td>3,03 x 10^4</td>
</tr>
</tbody>
</table>

*EL = equivalente larval; cada unidad EL corresponde a una larva infectada o enferma diluida en un litro de agua. Cada larva enferma contiene 2,028 x 10^6 células o gránulos virales (De Alcázar et al. 1992).

Los resultados del segundo ensayo con dosajes entre 100 y 500 EL se presentan en el cuadro 2. No existen diferencias significativas entre la mortalidad causada por los primeros cuatro tratamientos; pero si presentan diferencias significativas con la quinta concentración.

CUADRO 2. Mortalidad de larvas I de Symmetricschema tanglesa infectadas con el virus de la granulosis de Phthorimaea operculella (PwG). Larvas I alimentadas en tubérculos de papa previamente sumergidos durante 60 segundos en la dilución o concentración viral (100 a 500 EL). 100 larvas I por tratamiento. CIP, La Molina, Lima. 1994. Prueba Duncan: P = 0,05.

<table>
<thead>
<tr>
<th>Concentración viral</th>
<th>Larvas muertas</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL* (larvas virales por litro)</td>
<td>Cápsulas</td>
</tr>
<tr>
<td>Testigo</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>2,02 x 10^6</td>
</tr>
<tr>
<td>200</td>
<td>4,55 x 10^6</td>
</tr>
<tr>
<td>300</td>
<td>6,09 x 10^6</td>
</tr>
<tr>
<td>400</td>
<td>8,12 x 10^6</td>
</tr>
<tr>
<td>500</td>
<td>10,14 x 10^6</td>
</tr>
</tbody>
</table>

*EL = equivalente larval; cada unidad EL corresponde a una larva infectada o enferma diluida en un litro de agua. Cada larva enferma contiene 2,028 x 10^6 células o gránulos virales (De Alcázar et al. 1992).

En la figura 3 se puede observar las líneas de regresión después del análisis profíb en los dos ensayos. La ecuación de regresión para el primer ensayo es: Y = 3,05937 + 0,87793X según lo cual, la CL₉₀ es de 164,57 larvas por litro, con límites fiduciales de 68,41 a 396,38 larvas por litro. En el segundo ensayo, Y = 3,11906 + 0,86608X con una CL₉₀ de 149,57 larvas por litro y límites fiduciales de 82,15 a 272,31 larvas por litro.

En ninguno de estos dos ensayos se encontró larvas enfermas, por lo cual se decidió realizar un nuevo ensayo, con larvas III, para salir de la duda.

Ensayo con larvas del III estadio

Al finalizar las evaluaciones, realizadas a las dos semanas de exponer las larvas al virus, cuando se observó presencia de pupas, no se encontró larvas ni enfermas ni muertas en ninguna placa.

Discusión general

Tanto en el primer ensayo como en el segundo, trabajando con larvas I de Symmetricschema tanglesa puestas en contacto con el virus de la granulosis de Phthorimaea operculella (PwG), en ningún caso se encontró larvas enfermas. Se pudo observar una disminución de la población de la polilla en los tubérculos que fueron tratados con PwG y que el período larval aumentó en aquellas larvas que estuvieron expuestas al virus. Se podría decir que el virus PwG afecta a S. tanglesa de una forma no convencional; es decir, que de alguna manera el virus afecta a la larva I de una manera violenta si como si fuese un insecticida; pero si la larva logra sobrevivir a este período, ya el virus no la afecta.

En los dos ensayos con tubérculos de papa se observó una alta mortalidad en el testigo, posiblemente por ser una plaga de sierra y no se adapta a condiciones de costa.

Conclusiones

1. S. tanglesa es susceptible al virus de la granulosis de P. operculella de una manera no
convencional, es decir, no se ha encontrado larvas con síntomas de enfermedad.

2. Larvas afectadas con el virus de la granulosis prolongan su período larval, con respecto a larvas que no han estado expuestas al virus.

3. La CL$_{50}$ en Symmetrischema tangolius es de 149.6 a 164.57 larvas por litro con límites fiduciales que van de 68.41 a 396.38 larvas por litro.

4. Larvas del tercer estadio expuestas a altas concentraciones del virus de la granulosis no son afectadas.

Agradecimiento.- Al Dr. Fausto Cienfuegos Vera, por el constante asesoramiento; al Ing. Juan Herrera Arangüena, por su apoyo en la realización del trabajo de tesis; al Dr. Jean-Paul Zeddam, por la colaboración brindada para la realización del presente trabajo; y al Dr. Pedro Aguilar Fernández por la revisión del manuscrito y el trabajo editorial.

Literatura

