Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

Capítulo 8. Ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

TRABAJO MONOGRAFICO
Para optar el Título de Licenciado en Matemática pura

AUTOR

Sonia Alanya Pérez

LIMA – PERÚ
2004
8 Ecuación de Pell y Unidades en el Anillo de Enteros de los Cuerpos Cuadráticos

En esta última sección emplearemos la teoría de las fracciones continuas desarrolladas en las secciones precedentes para encontrar los soluciones de la Ecuación de Pell.

Definición. La ecuación diofántica

\[x^2 - dy^2 = \pm 1 \]

(donde \(d\) es un entero positivo que no es cuadrado perfecto) es llamada Ecuación de Pell.

En el corolario anterior se ha visto que existe solución de la ecuación de Pell. El problema es como hallar dicha solución.

Según el teorema 16; el desarrollo en f.c. del número irracional \(\sqrt{d}\) es una fracción continua periódica. Si \(t\) es la longitud del período; entonces de los términos del convergente \(C_{t-1} - \frac{p_{t-1}}{q_{t-1}}\) se obtiene una solución \(x = p_{t-1}; y = q_{t-1}\) de la ecuación de Pell.

Ejemplo 19 Resolver \(x^2 - 7y^2 = 1\)

Solución. Se tiene que \(\sqrt{7} = [2, 1, 1, 1, 4]\) entonces el periodo es \(t = 4\) y \(t - 1 = 3\)

<table>
<thead>
<tr>
<th>(k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_k)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(p_k)</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>37</td>
</tr>
<tr>
<td>(q_k)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>14</td>
</tr>
</tbody>
</table>

se tiene que \(C_{t-1} = C_3 = \frac{8}{3}\).

\[x = 8 \quad y = 3 \] es solución de:

\[x^2 - 7y^2 = 1 \]

Comprobando tenemos: \((8)^2 - 7(3)^2 = 64 - 63 = 1\)

Ejemplo 20. Resolver \(x^2 - 11y^2 = 1\)

Solución: Tenemos que \([\sqrt{11}] = [3, 3, 6]\) el periodo es \(t = 2\) entonces \(t - 1 = 1\)

<table>
<thead>
<tr>
<th>(k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_k)</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>(p_k)</td>
<td>3</td>
<td>10</td>
<td>63</td>
</tr>
<tr>
<td>(q_k)</td>
<td>1</td>
<td>3</td>
<td>19</td>
</tr>
</tbody>
</table>
\[C_{t-1} = C_1 = \frac{10}{3}, \]

\[\therefore \quad x = 10 \quad y = 3 \quad \text{es solución de} \quad x^2 - 11y^2 = 1 \]

Más aun todas las demás soluciones de la ecuación de Pell \(x^2 - dy^2 = 1 \) se obtiene de los coeficientes del

\[\left(p_{t-1} + \sqrt{dq_{t-1}} \right)^n = X_n + \sqrt{d}Y_n \quad \forall n \]

con \(x = X_n \) y \(y = Y_n \) una solución de la ecuación de Pell.

Consideremos el cuerpo numérico \(\mathbb{Q} \left(\sqrt{d} \right) \), donde \(d \) es un entero positivo que no es cuadrado perfecto; \(\alpha \in \mathbb{Q} \left(\sqrt{d} \right) \) si y solamente si \(\alpha = a + b\sqrt{d} \) donde \(a, b \in \mathbb{Q} \).

Definición. \(\alpha \) es un entero de \(\mathbb{Q} \left(\sqrt{d} \right) \) si y solamente si \(\exists p(x) \in \mathbb{Z}[x] \)

mónico; tal que \(p(\alpha) = 0 \).

Nota: Los enteros de \(\mathbb{Q} \left(\sqrt{d} \right) \) constituyen un anillo (conmutativo con unidad) que es un dominio.

Definición: Sea \(\alpha \) un entero de \(\mathbb{Q} \left(\sqrt{d} \right) \), \(\alpha \) es unidad si y solamente si existe otro entero \(\beta \) de \(\mathbb{Q} \left(\sqrt{d} \right) \) tal que \(\alpha \beta = 1 \).

Proposición: Las unidades positivas del anillo de enteros del cuerpo \(\mathbb{Q} \left(\sqrt{d} \right) \)

forman un grupo multiplicativo isomorfo a \(\mathbb{Z} \).

Demostración (Ver sección 4.6 de \[S\])

Nota: Los números \(p_{t-1}, q_{t-1} \) conformes al convergente \(C_{t-1} \) del desarrollo de \(\sqrt{d} \) nos proveen la primera unidad del anillo de enteros de \(\mathbb{Q} \left(\sqrt{d} \right) \),

\[u = p_{t-1} + \sqrt{dq_{t-1}}, \]

éste número es llamado la **Unidad Fundamental** y es denotado por

\[u_0 = x_0 + \sqrt{d}y_0; \]

entonces \(u_0^n, \quad \forall n \in \mathbb{Z} \) son todas las unidades positivas del anillo de enteros de \(\mathbb{Q} \left(\sqrt{d} \right) \). Así

\[U^+ = \{u_0^n \quad / \quad n \in \mathbb{Z}\} \approx \mathbb{Z} \]

43
Ejemplo 21: Hallar las unidades del cuerpo $\mathbb{Q}(\sqrt{2})$

Solución: Tenemos que $\sqrt{2} = [1, 2]$ el periodo es $t = 1 \therefore t - 1 = 0$

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_k</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>p_k</td>
<td>1</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>q_k</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Entonces

$u_0 = 1 + 1\sqrt{2} = 1 + \sqrt{2}$ y $u_0^{-1} = -1 + \sqrt{2}$

$u_0^2 = 1 + 2 + 2\sqrt{2} = 3 + 2\sqrt{2}$ y $u_0^{-2} = (u_0^2)^{-1} = 3 - 2\sqrt{2}$

$u_0^3 = (1 + 1\sqrt{2})^3 = 7 + 5\sqrt{2}$ y $u_0^{-3} = (1 + 1\sqrt{2})^{-3} = -7 + 5\sqrt{2}$

$u_0^4 = (1 + 1\sqrt{2})^4 = 17 + 12\sqrt{2}$ y $u_0^{-4} = (1 + 1\sqrt{2})^{-4} = 17 - 12\sqrt{2}$

$u_0^5 = (1 + 1\sqrt{2})^5 = 41 + 29\sqrt{2}$ y $u_0^{-5} = (1 + 1\sqrt{2})^{-5} = -41 + 29\sqrt{2}$

$u_0^6 = (1 + 1\sqrt{2})^6 = 99 + 70\sqrt{2}$ y $u_0^{-6} = (1 + 1\sqrt{2})^{-6} = 99 - 70\sqrt{2}$

$u_0^7 = (1 + 1\sqrt{2})^7 = 239 + 169\sqrt{2}$ y $u_0^{-7} = (1 + 1\sqrt{2})^{-7} = -239 + 169\sqrt{2}$
<table>
<thead>
<tr>
<th>(d)</th>
<th>Fracción continua para (\sqrt{d})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(\sqrt{2} = 1,2)</td>
</tr>
<tr>
<td>3</td>
<td>(\sqrt{3} = 1,1,2)</td>
</tr>
<tr>
<td>5</td>
<td>(\sqrt{5} = 2,4)</td>
</tr>
<tr>
<td>7</td>
<td>(\sqrt{7} = 2,1,1,1,4)</td>
</tr>
<tr>
<td>8</td>
<td>(\sqrt{8} = 2,1,4)</td>
</tr>
<tr>
<td>10</td>
<td>(\sqrt{10} = 3,6)</td>
</tr>
<tr>
<td>11</td>
<td>(\sqrt{11} = 3,3,6)</td>
</tr>
<tr>
<td>12</td>
<td>(\sqrt{12} = 3,2,6)</td>
</tr>
<tr>
<td>13</td>
<td>(\sqrt{13} = 3,1,1,1,1,6)</td>
</tr>
<tr>
<td>14</td>
<td>(\sqrt{14} = 3,1,2,1,6)</td>
</tr>
<tr>
<td>15</td>
<td>(\sqrt{15} = 3,1,6)</td>
</tr>
<tr>
<td>17</td>
<td>(\sqrt{17} = 4,8)</td>
</tr>
<tr>
<td>18</td>
<td>(\sqrt{18} = 4,4,8)</td>
</tr>
<tr>
<td>19</td>
<td>(\sqrt{19} = 4,2,1,3,1,2,8)</td>
</tr>
<tr>
<td>20</td>
<td>(\sqrt{20} = 4,2,8)</td>
</tr>
<tr>
<td>21</td>
<td>(\sqrt{21} = 4,1,1,2,1,1,8)</td>
</tr>
<tr>
<td>22</td>
<td>(\sqrt{22} = 4,1,2,4,2,1,8)</td>
</tr>
<tr>
<td>23</td>
<td>(\sqrt{23} = 4,1,3,1,8)</td>
</tr>
<tr>
<td>24</td>
<td>(\sqrt{24} = 4,1,8)</td>
</tr>
<tr>
<td>26</td>
<td>(\sqrt{26} = 5,10)</td>
</tr>
<tr>
<td>27</td>
<td>(\sqrt{27} = 5,5,10)</td>
</tr>
<tr>
<td>28</td>
<td>(\sqrt{28} = 5,3,2,3,10)</td>
</tr>
<tr>
<td>29</td>
<td>(\sqrt{29} = 5,2,1,1,2,10)</td>
</tr>
<tr>
<td>30</td>
<td>(\sqrt{30} = 5,2,10)</td>
</tr>
<tr>
<td>31</td>
<td>(\sqrt{31} = 5,1,1,3,5,3,1,10)</td>
</tr>
<tr>
<td>32</td>
<td>(\sqrt{32} = 5,1,1,1,10)</td>
</tr>
<tr>
<td>33</td>
<td>(\sqrt{33} = 5,1,2,1,10)</td>
</tr>
<tr>
<td>34</td>
<td>(\sqrt{34} = 5,1,4,1,10)</td>
</tr>
<tr>
<td>35</td>
<td>$\sqrt{35} = 5, 1, 10$</td>
</tr>
<tr>
<td>----</td>
<td>------------------</td>
</tr>
<tr>
<td>37</td>
<td>$\sqrt{37} = 6, 12$</td>
</tr>
<tr>
<td>38</td>
<td>$\sqrt{38} = 6, 6, 12$</td>
</tr>
<tr>
<td>39</td>
<td>$\sqrt{39} = 6, 4, 12$</td>
</tr>
<tr>
<td>40</td>
<td>$\sqrt{40} = 6, 3, 12$</td>
</tr>
<tr>
<td>41</td>
<td>$\sqrt{41} = 6, 2, 2, 12$</td>
</tr>
<tr>
<td>42</td>
<td>$\sqrt{42} = 6, 2, 12$</td>
</tr>
<tr>
<td>43</td>
<td>$\sqrt{43} = 6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12$</td>
</tr>
<tr>
<td>44</td>
<td>$\sqrt{44} = 6, 1, 1, 1, 2, 1, 1, 1, 12$</td>
</tr>
<tr>
<td>45</td>
<td>$\sqrt{45} = 6, 1, 2, 2, 2, 12$</td>
</tr>
<tr>
<td>46</td>
<td>$\sqrt{46} = 6, 1, 3, 1, 1, 2, 6, 2, 6, 2, 1, 1, 3, 1, 12$</td>
</tr>
<tr>
<td>47</td>
<td>$\sqrt{47} = 6, 1, 5, 1, 12$</td>
</tr>
<tr>
<td>48</td>
<td>$\sqrt{48} = 6, 1, 12$</td>
</tr>
<tr>
<td>50</td>
<td>$\sqrt{50} = 7, 14$</td>
</tr>
<tr>
<td>51</td>
<td>$\sqrt{51} = 7, 7, 14$</td>
</tr>
<tr>
<td>52</td>
<td>$\sqrt{52} = 7, 2, 1, 2, 1, 4, 14$</td>
</tr>
<tr>
<td>53</td>
<td>$\sqrt{53} = 7, 3, 1, 1, 3, 14$</td>
</tr>
<tr>
<td>54</td>
<td>$\sqrt{54} = 7, 2, 1, 6, 1, 2, 14$</td>
</tr>
<tr>
<td>55</td>
<td>$\sqrt{55} = 7, 2, 2, 2, 14$</td>
</tr>
<tr>
<td>56</td>
<td>$\sqrt{56} = 7, 2, 14$</td>
</tr>
<tr>
<td>57</td>
<td>$\sqrt{57} = 7, 1, 1, 4, 1, 1, 14$</td>
</tr>
<tr>
<td>58</td>
<td>$\sqrt{58} = 7, 1, 1, 1, 1, 1, 1, 14$</td>
</tr>
<tr>
<td>59</td>
<td>$\sqrt{59} = 7, 1, 2, 7, 2, 1, 14$</td>
</tr>
<tr>
<td>60</td>
<td>$\sqrt{60} = 7, 1, 2, 1, 14$</td>
</tr>
<tr>
<td>61</td>
<td>$\sqrt{61} = 7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14$</td>
</tr>
<tr>
<td>62</td>
<td>$\sqrt{62} = 7, 1, 6, 1, 14$</td>
</tr>
<tr>
<td>63</td>
<td>$\sqrt{63} = 7, 1, 14$</td>
</tr>
<tr>
<td>65</td>
<td>$\sqrt{65} = 8, 16$</td>
</tr>
<tr>
<td>66</td>
<td>$\sqrt{66} = 8, 8, 16$</td>
</tr>
<tr>
<td>67</td>
<td>$\sqrt{67} = 8, 5, 2, 1, 1, 7, 1, 1, 2, 5, 16$</td>
</tr>
<tr>
<td>68</td>
<td>$\sqrt{68} = 8, 4, 16$</td>
</tr>
<tr>
<td>69</td>
<td>$\sqrt{69} = 8, 3, 3, 1, 4, 1, 3, 3, 16$</td>
</tr>
<tr>
<td>70</td>
<td>$\sqrt{70} = 8, 2, 1, 2, 1, 2, 16$</td>
</tr>
</tbody>
</table>