ARTÍCULOS ORIGINALES

COMPROBACIÓN DEL EFECTO CICATRIZANTE DE
Peperomia scutellaeafolia R et P.
ASPECTOS BOTÁNICOS, QUÍMICOS Y FARMACOLÓGICOS

RUTH F. GUILLERMO¹, PABLO E. BONILLA R.¹ Y JORGE L. ARROYO A.²

RESUMEN
En la presente investigación, se realizó una descripción de los caracteres morfológicos externos de la especie y la descripción de ciertos caracteres microscópicos en los diversos órganos de la planta. Se evaluó el efecto cicatrizante de Peperomia scutellaeafolia R. et P. en forma de geles, mediante el método tensiомétrico. Se utilizaron ratones albinos cepa Balb C 53 de 25 g de peso; y como tratamientos geles de Carbopol 940 al 5%, 10%, 20% y 30% P/P de extracto vegetal, comparando los resultados con el grupo control y con el grupo tratado con un medicamento comercial. Se obtuvo mayor efecto cicatrizante con el gel al 5%. Se aislaron e identificaron compuestos fenólicos y flavonoides por espectrofotometría ultravioleta-visible, espectrofotometría infrarroja y por reacciones químicas.

Palabras clave: Peperomia scutellaeafolia R. et P., cicatrizante, método tensiомétrico, flavonoides, espectrofotometría ultravioleta e infrarroja.

SUMMARY
A description of the morphological external characteristics of Peperomia scutellaeafolia R. et P. and some microscope details and the wound healing effect of vegetal specie Peperomia scutellaeafolia R. et P. were evaluated and described in this research using tensiомetric methods and the results were corroborated with histological studies in order to observe and analyze the histological evolution in each case. Batch Balb C 53 albine mice with 25g of average weight were used and treated with Carbopol 940 gels with 5%, 10%, 20% and 30% W/W concentrations of this vegetal extract. The results obtained were compared with two groups: the control group (without treatment) and another group treated with a commercial medicament. A better wound healing effect with Peperomia’s 5% W/W concentration gel was obtained. Flavonoids and fenolic compounds were found and identified by ultraviolet and infrared spectrophotometry and coloration reactions.

Key words: Peperomia scutellaeafolia R. et P., wound healing, tensiомetric method, flavonoids, spectrophotometry ultraviolet and infrared.

INTRODUCCIÓN
En muchos sistemas de salud de América, Asia y Europa, es frecuente el uso de drogas vegetales y fitomedicinas, como parte integral de la medicina convencional. En estos casos, basándose en la información médica tradicional, ha sido posible para la medicina científica validar la acción terapéutica y establecer los usos correctos de los recursos vegetales.

Las plantas del género Peperomia, son de uso frecuente como medicamentos en la sierra peruana, en casi toda la costa del Perú, y en algunas zonas de la selva; en este sentido, es necesario estudiar sus efectos, con el fin de permitir su uso racional.

La especie Peperomia scutellaeafolia R. et P., cuyo nombre vernacular es Munshu – Munshu (en quechuá presenta dos significados: (i) ombligo–omblio y (ii) bien redondo), esto en alusión a la forma de su tallo subterráneo generalmente esférico, que asemeja un ombligo. La especie crece en la sierra norte del Perú, en suelos secos y rocosos. Es utilizada tradicionalmente para curar males cardíacos, úlceras estomacales y heridas externas de la piel.

Se postula que la especie Peperomia scutellaeafolia R. et P., posee influencia sobre la reparación tisular como cicatrizante externo por su gran contenido de compuestos fenólicos especialmente flavonoides.

¹ Instituto de Investigación en Ciencias Farmacêuticas y Recursos Naturales Juan de Dios Guevara Facultad de Farmacia y Bioquímica-Universidad Nacional Mayor de San Marcos.
² Laboratorio de Farmacología Facultad de Medicina-Universidad Nacional Mayor de San Marcos.
Los objetivos de la presente investigación fueron comprobar la acción cicatrizante externa atribuida a la especie *Peperomia scutellaeformia* R. et P., mediante ensayo farmacológico experimental, identificar las características botánicas de la planta que facilitarían la diferenciación de otras especies parecidas - en caso sea comercializada - entera o fragmentada, y comprobar los tipos de compuestos fenólicos que la especie *Peperomia scutellaeformia* R. et P. posee.

La cicatrización de las heridas cutáneas, se presenta como una masa de colágeno que se forma cuando no es posible reparar la necrosis de células parenquimatosas por regeneración; si se destruyen las células hasta la capa basal, de la dermis o epidermis, sucede una reparación con formación de cicatriz. Todos los experimentos en cicatrización, buscan agentes que aceleren dicho proceso, el cual puede durar desde 3 meses hasta varios años para alcanzar un valor de resistencia a la tensión que se mantiene durante toda la vida y que suele ser del 70 a 80 %, respecto a la piel intacta.

A nivel mundial, se ha evaluado el éxito de la cicatrización experimental por diversos métodos, por ejemplo, Raimondi y col.2 evaluaron la actividad de los flavonoles contenidos en la especie *Sedum telephium* L.

MATERIAL Y MÉTODOS

Estudio Botánico

- Clasificación sistemática.
- Descripción macroscópica y microscópica de la especie.
- Corte transversal de la hoja.
- Corte transversal del pecíolo.
- Corte transversal del tallo subterráneo.

Los tallos subterráneos, crecen de manera silvestre en los distritos de Namora, Encañada, y Llacanora, en la provincia de Cajamarca, a una altitud entre 3000 y 4000 m.s.n.m.

La recolección, se realizó en el mes de septiembre cuando la especie se encontraba en etapa de floración. *Peperomia scutellaeformia* R. et P. crece en tierra seca y rocosa; el tallo subterráneo se encuentra entre 1 - 2 cm bajo tierra. Se limpió, secó, molió y se almacenó en frascos oscuros.

Se empleó:

- Especie *Peperomia scutellaeformia* R. et P., planta completa y fresca.
- Trinocular stereo zoom. Marca: Beltec scientific. Model XLT-500B.
- Sistema de video-microscopía con conexión a PC. Beltec scientific. Modelo 480B.
- Colorante verde de malaquita (1% solución alcohólica), Colorante safranina (1% solución alcohólica), Sol. de NaClO (20%), Gelatina glicerinada, Médula de sauco.

Estudio Químico

Se empleó:

- Espectrómetro ultravioleta visible. (UV - VIS) Perkin Elmer. Modelo: LAMBDA 40P
- Lámparas UV 254 nm y 366 nm.
- Balanza analítica Mettler.
- Material básico de vidrio.

El polvo seco fue macerado en solución hidroalcohólica (EtOH 96%) por 7 días en oscuridad, luego fue filtrado con una gasa, el líquido filtrado fue concentrado, resultando el extracto hidroalcohólico total; a partir de este extracto se separaron cuatro fracciones por cromatografía en columna rápida (flash chromatographic). Se pesaron 5 g del extracto hidroalcohólico bruto, se agregaron 5 g de silicagel para cromatografía en columna, 0.05 - 0.2 mm y se mezcló hasta homogeneizar. Esta mezcla fue depositada en un embudo Buchner, sobre un papel de filtro, encima se colocó otro papel, el equipo fue armado según esquema, y con ayuda de la bomba de vacío, los solventes fueron extrayendo los metabolitos, en orden de polaridad creciente: n-hexano, cloroformo, metanol y finalmente agua destilada, se utilizaron 100 mL de cada solvente. Estos extractos fueron concentrados obteniéndose las fracciones n-hexánica, clorofórmica, metanolica y acuosa.

- Ensayo de solubilidad del extracto total con solventes de polaridad creciente.
Marcha fitoquímica. Se realizaron las siguientes reacciones químicas en el extracto hidroalcohólico total: Reacción con FeCl₃ (1 % en H₂O); reacción con gelatina / NaCl (1g de gelatina + 100 ml H₂O + 10g NaCl); reacción de Shinoda; reacción de Dragendorff (Yoduro de Bismuto y Potasio); reacción de Mayer (Yoduro de Mercurio y Potasio); índice afrosimétrico o prueba de la espuma; reacción de Liebermann–Burchard.

- Análisis cromatográfico. Los extractos obtenidos a partir de la cromatografía en columna rápida, se controlaron por cromatografía en capa fina analítica, usándose como soporte cromatoplacas de sílica gel F60 de 20 cm x 20 cm, de 2 mm de espesor y fases móviles adecuadas. Fueron revelados con los reactivos de Dragendorff, FeCl₃, Liebermann–Burchard, H₂SO₄ concentrado, luz UV de 254 nm y 366 nm. Se realizaron cromatografías sucesivas a escala preparativa, y se consiguió separar las fracciones en componentes individuales para su posterior evaluación espectrofotométrica.

- Análisis espectrofotométrico. Después de ser aisladas fueron analizadas las fracciones provenientes de los extractos metanólico y n-hexánico por espectroscopía ultravioleta y espectroscopía infrarroja. El espectro UV de las fracciones fue leído en MeOH, y el espectro infrarrojo en láminas de NaCl.

Estudio Farmacológico

Se empleó:

- Extracto hidroalcohólico total de Peperomia scutellaeifolia R. et P.
- 96 ratones albinos machos, cepa Balb C 53, de 2 meses de edad, de alrededor de 25 g de peso.
- Dinamómetro (equipo de tensión con arena).
- Neomicina, bacitracina, glicina, L - cisteína, DL - treonina, (Cicatriz).
- Gel Carbopol 940, trietanolamina, propilenglicol, y H₂O desionizada.
- Crema depilatoria Opilca.
- Pentobarbital sódico (Halatal, medicamento veterinario)
- Estiletes Nº 11, jeringas y agujas para inyección intraperitoneal.

Se trabajó con el extracto hidroalcohólico total.

Preparación de los geles:

(i) Se preparó una suspensión coloidal de Carbopol 940 al 1% en agua desionizada, con 24 horas de anticipación para lograr una buena hidratación, a un pH=3,0.

(ii) Para la incorporación del principio activo se efectuó la disolución de este en una fracción de la solución coloidal, se agregaron unas gotas de propilenglicol para solubilizar el extracto y proteger de la deshidratación al gel.

(iii) Finalmente, se neutralizó con gotas de trietanolamina (99%), homogeneizando hasta adquirir características de gel a pH = 6.5.

(iv) Forma de Dosificación. Con el extracto hidroalcohólico total seco, se prepararon geles al 5%, 10%, 20%, 30%, P/P en una base bioadhesiva de ácido poliacrílico (Carbopol 940) al 1% y gel con solo la base.

Test de cicatrización

Se fundamenta en la medición de la fuerza de tensión (medida en gramos), necesaria para abrir una herida de 1 cm de longitud producida en el lomo de ratón. Modelo de referencia de Howes et al. ⁵⁰

Técnica operatoria. Se utilizó el método de Vaisberg y col. ⁶⁷ con 96 ratones albinos machos, cepa Balb C 53, de 2 meses de edad, 25 g de peso provenientes del bioterio del Centro Nacional de Producción de Biológicos, los cuales fueron distribuidos al azar en 8 grupos de 12 cada uno. Se mantuvieron en observación por 48 horas, verificándose la condición óptima de los ratones para el estudio, luego se les depiló la mitad inferior del lomo, después de 24 horas, al no observarse irritaciones en la piel, se realizaron incisiones de 1 cm de longitud en el tercio inferior del lomo, paralelo a la columna lumbar.

Posteriormente, se administraron los tratamientos cada 12 horas por 72 horas, reservando al grupo control que no recibió tratamiento. Se mantuvo la misma alimentación, ventilación, y T° en todos los grupos. Después de las 72 horas se sacrificaron los animales con una sobredosis de pentobarbital sódico por vía intraperitoneal; luego se realizó la medición de los gramos (g), necesarios para abrir cada herida cicatrizada con un dinamómetro (utilizándose arena en el dinamómetro, para generar la fuerza de tensión sobre la herida).
RESULTADOS

Estudio Botánico

Clasificación sistemática. Realizada en el Museo de Historia Natural «Javier Prado», según el sistema de clasificación de Engler & Prantl, modificado por Melchior en 1964, como sigue:

DIVISIÓN: ANGIOSPERMAE
CLASE: DICOTILEDONEAS
SUBCLASE: ARQUICLAMIDEAS
ORDEN: PIPERALES
FAMILIA: PIPERACEAE
GÉNERO: PEPPEROMIA
ESPECIE: Peperomia scutellafolia R. et P.

Nombre Vulgar: Munshu-Munshu.

Descripción macroscópica y microscópica de Peperomia scutellafolia R. et P.

Es una planta herbácea, el tallo es subterráneo, de forma generalmente esférica, achata en la parte superior e inferior. Aunque también puede ser algo cilíndrico o alargado en algunos ejemplares, especialmente en las plantas más viejas. En general, es bastante semejante a una papa pequeña pero sin yemas laterales, puede medir hasta 4 cm de diámetro y 3 cm de altura, posee pequeñas raíces que suelen desarrollarse a partir de la mitad inferior del tallo. En la parte superior presenta una yema, como hendidura, a partir de la cual se desarrolla el escapo.

Con hojas peltadas de color verde brillante el haz y color rojizo el envés, totalmente glabras, de forma elíptica a redonda, de hasta 2 cm de diámetro, margen liso, con una ligera emarginación al final de la nervadura principal, la nervadura principal parte del punto de inserción del pecíolo, que puede insertarse desde el centro de la lámina foliar, hasta los 2/3 de la hoja, las ramificaciones de la nervadura son tenues y se observan sólo en el envés.

Los pecíolos son largos y delgados, midiendo entre 3 hasta 7 cm de largo y aproximadamente 1.0 mm de diámetro, glabros, de color rojizo, excepto en la porción inferior donde se unen al tallo que es amarillo muy claro.

Las inflorescencias son espadíciformes, miden hasta 6 cm de largo, de flores diminutas, color verde claro, el pedúnculo es apenas diferente del pecíolo y mide entre 3 – 8 cm, también es de color rojizo y cambia al amarillo justo antes de empezar la espádice. Cuando las flores son inmaduras se observan 2 brácteas opuestas de color rojizo oscuro, conforme van madurando las flores, las brácteas cambian su color a crema, y las flores adultas se ubican en la parte inferior de la espádice. En la inflorescencia se observan tres zonas: inferior, de flores maduras, que adquiere color amarillo, intermedia, de flores con brácteas redondas a ovaladas pegadas a la flor, de color rojizo oscuro, y superior, de flores inmaduras, que aún no desarrollan brácteas coloradas, muy pequeñas y apiñadas unas a otras.

Estudio Químico

Resultados de la marcha de solubilidad del extracto hidroalcohólico total, bastante soluble en metanol y agua.

Resultados de la marcha fitoquímica del extracto hidroalcohólico total, se ha determinado presencia abundante de compuestos fenólicos, flavonoides, taninos y alcaloides.

Resultados del análisis cromatográfico, se realizaron cromatografías en capa fina de las fracciones resultantes de la cromatografía rápida. Cuadros 1 y 2.

1.- Fracción metanólica

<table>
<thead>
<tr>
<th>Subfracción</th>
<th>Rf</th>
<th>Visible</th>
<th>Fluorescencia a la Luz UV</th>
<th>FeCl₃</th>
<th>Rvo. Dragendorff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metanólica I</td>
<td>0.05</td>
<td>marrón beige</td>
<td>púrpura amarillo</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Metanólica II</td>
<td>0.20</td>
<td>beige</td>
<td>verde amarillento</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Metanólica III</td>
<td>0.27</td>
<td>beige claro</td>
<td>verde intenso</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Metanólica IV</td>
<td>0.41</td>
<td>beige claro</td>
<td>blanco azulado</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Metanólica V</td>
<td>0.73</td>
<td></td>
<td>púrpura</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Metanólica VI</td>
<td>0.81</td>
<td></td>
<td>celeste</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Metanólica VII</td>
<td>0.92</td>
<td>crema beige</td>
<td>blanco verduzco</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

(*) = presencia . (-) = ausencia
a) La fracción metanólica I del Cuadro 1 con Rf = 0.05, se eluyó y se recromatografió con un sistema de solventes: EtOH : H2O 3:1, obteniéndose un sistema de cuatro subfracciones, F I-1, FII-2, FIII-3 y FIV-4. La fracción metanólica I-1 con Rf = 0.20, se recromatografió con un sistema de solventes EtOH : H2O 3:1, obteniéndose tres subfracciones, con la fracción metanólica I-1 se realizaron lecturas para obtener sus espectros UV-visible e IR.

b) La fracción metanólica III del Cuadro 1 con Rf = 0.27 se eluyó y se recromatografió en sistema de solventes: CHCl₃ : MeOH 10:1 obteniéndose cinco subfracciones. Con la subfracción metanólica III-5 se realizaron lecturas para obtener sus espectros UV-visible e IR.

c) La fracción metanólica V del Cuadro 1 con Rf = 0.73; se eluyó y se recromatografió en sistema de solventes: B.A.W. (n-butanol, ácido acético, agua 4:1:5) obteniéndose dos subfracciones: FM V-1 y FM V-2, se realizaron lecturas para obtener sus espectros UV-visible e IR.

2.- Fracción n-hexánica

TABLA 2. SEPARACIÓN DE LA FRACCIÓN N-HEXÁNICA POR CROMATOGRAFÍA EN CAPA FINA
(Sistema de solventes: CHCl₃:MeOH 20:1)

<table>
<thead>
<tr>
<th>Subfracción</th>
<th>Rf</th>
<th>Visible</th>
<th>Luz UV</th>
<th>FeCl₃</th>
<th>Liebermann Burchard</th>
<th>H₂SO₄ + LuzUV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexánica I</td>
<td>0.79</td>
<td>beige</td>
<td>fl. amarillo</td>
<td>+</td>
<td>-</td>
<td>amarillo</td>
</tr>
<tr>
<td>Hexánica II</td>
<td>0.89</td>
<td>beige claro</td>
<td>fl. verde celeste</td>
<td>+</td>
<td>+</td>
<td>azul intenso</td>
</tr>
<tr>
<td>Hexánica IV</td>
<td>0.92</td>
<td>beige</td>
<td>fl. púrpura</td>
<td>+</td>
<td>-</td>
<td>púrpura</td>
</tr>
</tbody>
</table>

(+) = presencia , (-) = ausencia
Seguidamente se realizaron lecturas para obtener sus espectros UV-visible e IR.

Estudio Farmacológico

Test de cicatrización

TABLA 3. RESULTADOS DEL TEST DE CICATRIZACIÓN (MÉTODO TSENSOMETRICO)

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>N</th>
<th>Valor medio (g)</th>
<th>Desviación estándar (g)</th>
<th>Error estándar (%)</th>
<th>Eficacia decicatrización (%)</th>
<th>Significancia (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesión no tratada</td>
<td>10</td>
<td>15.9</td>
<td>1.7288</td>
<td>0.5467</td>
<td>7.10</td>
<td>P>0.05</td>
</tr>
<tr>
<td>Gel</td>
<td>10</td>
<td>20.5</td>
<td>2.0683</td>
<td>0.6540</td>
<td>9.10</td>
<td>P>0.05</td>
</tr>
<tr>
<td>Gel 5%</td>
<td>10</td>
<td>54.6</td>
<td>1.7764</td>
<td>0.5617</td>
<td>24.25*</td>
<td>P<0.0001</td>
</tr>
<tr>
<td>Gel 10%</td>
<td>10</td>
<td>40.6</td>
<td>4.5509</td>
<td>1.4391</td>
<td>18.03*</td>
<td>P<0.0001</td>
</tr>
<tr>
<td>Gel 20%</td>
<td>10</td>
<td>44.3</td>
<td>4.7621</td>
<td>1.5059</td>
<td>19.70*</td>
<td>P<0.0001</td>
</tr>
<tr>
<td>Gel 30%</td>
<td>10</td>
<td>47.6</td>
<td>4.4522</td>
<td>1.4079</td>
<td>21.14*</td>
<td>P<0.0001</td>
</tr>
<tr>
<td>Cicatrina</td>
<td>10</td>
<td>43.6</td>
<td>2.6331</td>
<td>0.8327</td>
<td>19.36*</td>
<td>P<0.0001</td>
</tr>
<tr>
<td>Piel intacta</td>
<td>10</td>
<td>225.2</td>
<td>12.2547</td>
<td>3.8753</td>
<td>100.00</td>
<td>P<0.0001</td>
</tr>
</tbody>
</table>

(%) Eficacia de cicatrización = (gramos necesarios para abrir la cicatriz tratada) X100 (gramos necesarios para abrir la piel intacta)
DISCUSIÓN

La descripción macroscópica de *Peperomia scutellaefolia* R. et P. conocida con el nombre común de Munshu-Munshu, corresponde a la literatura disponible, como características propias de la especie que permiten diferenciarla de otras *Peperomias* como *Peperomia peruviuna*, puede mencionarse: el pecíolo pigmentado, las hojas peltadas que tienden a adoptar forma de conos, brillantes en el envés. En el corno (tallo subterráneo) se observa que las raíces se desarrollan a partir de la mitad inferior del tallo. Al ser cortado fresco, el corno despide un olor característico que hace recordar al jengibre, y las superficies son pegajosas al tacto.

Las características reportadas de la hoja se observaron en 2 cortes histológicos: del pecíolo y de la lámina foliar. En la lámina foliar se observan características propias de la especie, como la epidermis pluriestratificada. Se observan también idioblastos (con contenido amarillo e hidrosoluble), además de algunos cristales de oxalato de calcio, la epidermis inferior presenta células que contienen pigmentos violetas. La lámina foliar es glabra en el haz y el envés. El corte histológico del pecíolo fue tomado de la parte media, donde se observaron células pigmentadas de violeta en la parte externa.

En caso de que la especie fuera comercializada fragmentada, se podría identificar por la peridermis, los abundantes cristales y las células con contenido amarillo hidrosoluble (probablemente flavonoides), características observables en el tallo subterráneo.

Con respecto al estudio fitoquímico de los extractos: la marcha de solubilidad indica que se obtendría una mayor cantidad de extracto vegetal utilizando una mezcla de solventes polares como MeOH + H₂O.

La marcha fitoquímica permite establecer que *Peperomia scutellaefolia* R. et P. contiene principalmente compuestos fenólicos (flavonoides, taninos, etc.) y álcaloides. Esto concuerda con los datos reportados para otras especies del género *Peperomia* también presentes en el Perú.

Los cromatogramas en capa fina de los extractos mostraron que las fracciones metanólica y hexánica, poseen interés por contener gran cantidad de compuestos fenólicos y flavonoides.

Elucidación estructural propuesta

Se proponen estructuras químicas al realizar el análisis del comportamiento químico y físicoquímico a través de los espectros Ultravioleta-visible e Infrarrojo de las fracciones aisladas mediante técnicas cromatográficas.

1. **Fracción metanólica I-1.1**: lecturas obtenidas: UV-visible: λ^{MeOH}: 236(h), 282, 314(h) nm; IR: ν cm⁻¹ 3409 (OH), 1645 (C=O), 1074 (C-H aromático), 2850-3000 (CH₂ y CH₃ alifáticos)

Comparando los espectros UV-visible con los reportados por Mabry, correspondería al dihidroflavonol glucosilado (+) Fustin-3-O-glucopiranósido.

![Fig. 1. (+) Fustin-3-O-glucopiranósido](image1)

2. **Fracción metanólica III-5**: lecturas obtenidas: UV-visible: λ^{MeOH}: 226, 282(h) nm; IR: ν cm⁻¹ 3427 (OH), 2952, 2926, 2840 (CH₂ y CH₃ alifáticos), 1644, 1729 (C=O de ácido carboxílico), 1456 (C=C- aromático), 970-1220 (C-H aromático)

Con los datos anteriores de los espectros UV-visible e IR se deduce que correspondería a un compuesto fenólico monocíclico simple de tipo fenilpropanoide. (ácido 2-en-2-metil-3-p hidroxifenilpropanoico)

![Fig. 2. Ácido 2-en-2-metil-3-p-hidroxifenilpropanoico](image2)
3. Fracción metanólica V-1; lecturas obtenidas: UV-visible: $\lambda_{\text{MeOH}}^{\text{max}}$ 205(h), 258 nm; IR: ν cm$^{-1}$ 3416 (OH); 1638 (>C=O), luego de analizar correspondería a un fenilpropanoide (ácido 3-fenilpropanoico).

![Fig. 3. Ácido 3-fenilpropanoico](image)

4. Fracción metanólica V-2; lecturas obtenidas: UV-visible: $\lambda_{\text{MeOH}}^{\text{max}}$ 254, 297(h), 330(h) nm; IR: ν cm$^{-1}$ 3447(OH); 1638(C=O), por los espectros UV-visible se trataría de una isoflavona con estructura similar a pratensein, sería la isoflavona 7,3'-dihidroxi-5,4'-dimetoxisoflavona.

![Fig. 4. 7,3'-dihidroxi-5,4'-dimetoxisoflavona](image)

5. Fracción n-hexánica-I; lecturas obtenidas: UV-visible: $\lambda_{\text{MeOH}}^{\text{max}}$ 256, 283(h), 330(h) nm; IR: ν cm$^{-1}$ 2923(C-H); 1748(C=O); 1643(deform. C=C, aromático); 1372(estiramiento C-O, de fenoles); 717, 705(C-H aromático)

Resultando el compuesto 7,4'-dihidroxi-5,3'-dimetoxisoflavona.

![Fig. 5. 7,4'-dihidroxi-5,3'-dimetoxisoflavona](image)

6. Fracción n-hexánica II; lecturas obtenidas: UV-visible: $\lambda_{\text{MeOH}}^{\text{max}}$ 259, 327 nm; IR: ν cm$^{-1}$ 3420(OH); 1638(C=O). La fracción n-hexánica-II correspondería a la isoflavona Texasin -7-O-glucopiranósido (6-hidroxi-7-O-glucopiranosil-4'-metoxisoflavona)

![Fig. 6. Texasin -7-O-glucopiranósido](image)

7. Fracción n-hexánica III; lecturas obtenidas: UV-visible: $\lambda_{\text{MeOH}}^{\text{max}}$ 264, 318(h), 335(h)nm; IR: ν cm$^{-1}$ 2909(C-H de aldehido -CHO); 1722 (>C=O, grupo carbonilo); 1457(C=C, aromático). Analizando los espectros UV e IR de la fracción n-hexánica III; este compuesto correspondería a un fenilpropanoide (2-en-3-fenilpropionaldehído)

![Fig. 7. 2-en-3-fenilpropionaldehído](image)

8. Fracción n-hexánica IV; lecturas obtenidas: UV-visible: $\lambda_{\text{MeOH}}^{\text{max}}$ 267, 326 nm; IR: ν cm$^{-1}$ 3429(OH); 2962-2845(C-H); 1645(C=O); 1457-1372(C=C, aromático)

Correspondería al 5-hidroxi-7-O-glucopiranósido-6,4'-dimetoxisoflavona.

![Fig. 8. 5-hidroxi-7-O-glucopiranósido-6,4'-dimetoxisoflavona](image)
De la evaluación espectrofotométrica de las fracciones aisladas, se encontró que estas contenían flavonoides derivados del núcleo de la isoflavona y un derivado del núcleo del dihidroflavonol, estos compuestos se generan por la ruta biogenética del shikimato y del acetato-malonato. Además de los flavonoides hallados como tales, se encontraron sus precursores: los fenilpropanoides que provienen de la ruta del shikimato.

De los ensayos para evaluar la actividad cicatrizante se observó que todos los geles formulados a base del extracto de *Peperomia scutellaefolia* R. et P; presentan actividad terapéutica como cicatrizantes externos, esto se refleja en una mayor velocidad de reparación en los primeros días de curación de la herida, posteriormente las heridas continúan con sus etapas normales de acumulación y remodelación del colágeno, para finalmente alcanzar una resistencia de aproximadamente el 80% de la piel intacta. En orden de mayor a menor actividad se encuentran: gel 5%, gel 30%, gel 20%, y por último el gel 10%. Este efecto podría deberse a la presencia de flavonoides contenidos en las plantas de la familia Piperaceae, como reporta Villegas et al.7, que investigaron la actividad cicatrizante de *Peperomia galioides H.B.K* y Arroyo et al.13, que investigaron la actividad cicatrizante de *Piper angustifolium*.

CONCLUSIÓN

La especie *Peperomia scutellaefolia* R. et P, presenta actividad terapéutica como cicatrizante externo en la forma farmacéutica de gel. El tratamiento con mayor eficacia fue el gel al 5%. Tomando como valor referencial de 100% a la resistencia a la tensión de la piel intacta. Estadísticamente se observó que los niveles de resistencia a la tensión alcanzados con los tratamientos de *Peperomia scutellaefolia* R. et P, presentan todos una diferencia significativa al ser comparados con el tejido no tratado, con una significancia de: p < 0.0001.

REFERENCIAS BIBLIOGRÁFICAS

5. Howes E, Sooy J, Harvey S. The healing of wound as determined by their tensile strength. J.A.M.A. 1929; 42(5).

9. www.peperomiapage.com

