CONTROL MINERALOGICO DE PROCESOS METALURGICOS (aplicación de la microscopía de luz reflejada)

Por: E. Cedillo P.*

RESUMEN

El presente trabajo reúne una serie de ideas y experiencias en el campo de la mineralogía aplicada a la metalurgia. En esta primera parte se trata de dar un enfoque de los alcances de la microscopía de luz reflejada en la solución de problemas de beneficio de minerales, con especial referencia a aquellos que se presentan en los procesos de flotación.

1. INTRODUCCION

La microscopía de luz reflejada constituye una herramienta muy valiosa en el estudio de las características mineralógicas de las menas. Su desarrollo ha marchado paralelo a una necesidad cada vez mayor de encontrar una interpretación genética adecuada de los yacimientos, a razones de tipo tecnológico (como información para llevar a cabo los procesos de beneficio) y a la necesidad de un mejor control de las materias primas en general. Existe actualmente una amplia bibliografía al respecto, siendo la obra más completa la escrita por el profesor Paul Ramdohr, titulada “The Ore Minerals and their Intergroths”. Existen asimismo muchas publicaciones relacionadas a la microscopía aplicada: el primer trabajo sistemático fue realizado por G. Schwartz en 1938 y publicado en la revista Economic Geology bajo el título “Review of the Application of Microscopy Study to Metallurgical Problems”. En 1961, G. C. Amstutz en su trabajo “Microscopy Applied to Mineral Dressing” cita 209 referencias bibliográficas de publicaciones relacionadas a la aplicación práctica de la microscopía.

A pesar de la amplia bibliografía conocida, es posible que muchas de las investigaciones realizadas con propósitos tecnológicos no

* Lab. Petromineralogía — MINERO PERU.
Sean dados a conocer por los centros de investigación de las grandes compañías mineras.

Por esta razón en el presente trabajo, si bien es cierto no se citan ejemplos específicos de aplicación, se dan los criterios y la sistemática usados en los estudios realizados en este campo, en el Lab. de Petromineralogía de MINERO PERÚ.

2. MINERALOGÍA EN LOS PROCESOS METALURGICOS

En la fase de exploración detallada de un yacimiento, es necesario realizar una serie de pruebas metalúrgicas con el material procedente ya sea de los testigos de perforación o de galerías exploratorias, con la finalidad de encontrar el método de beneficio más adecuado. Estas pruebas no se realizan (o no se debieran realizar) sin un estudio mineralógico que garantice el tratamiento óptimo de la mena. Los estudios mineralógicos detallados tendrán como misión garantizar el conocimiento integral de la mena para tener la seguridad que el yacimiento se explotará racionalmente. Un mineralogista experimentado recomendará, sobre bases geológicas, poner atención a otros elementos que podrían encontrarse en el yacimiento y consecuentemente aumentar el valor del mismo.

En la fig. 1, se esquematiza lo que debiera ser, a partir de un cierto momento, la interacción entre los campos mineralógico y metalúrgico, durante el proceso de exploración detallada. Posteriormente a esta fase, los estudios mineralógicos, siempre serán de valiosa ayuda al metalurgista, pero sin olvidar que los mayores problemas se deben resolver en la fase de experimentación, ya que lo contrario se haría solo a costa de lamentables pérdidas a consecuencia de bajas sorpresivas de la recuperación.

En primera instancia el mineralogista tendrá que evaluar toda la información geológica existente, incluyendo los ensayos químicos realizados. Los estudios mineralógicos sistemáticos se realizarán considerando el muestreo más conveniente, es decir teniendo en cuenta las variaciones de mineralización que podría ofrecer cada tipo de yacimiento y tratando que el material a estudiarse sea lo más representativo posible.

Los estudios mineralógicos sistemáticos permitirán establecer la correlación entre las leyes de un determinado elemento y el mineral o minerales portadores. Con esta información el metalurgista podrá realizar sus primeras pruebas experimentales, en las que el mineralogista deberá colaborar realizando el trabajo de control mineralógico. Un buen ejemplo de cómo los datos mineralógicos ayudan a determinar
APLICACIÓN DE LA MINERALOGÍA EN LAS PRUEBAS EXPERIMENTALES METALÚRGICAS

MINERALOGÍA

- Evaluación de la Información mineralógica preliminar
- Estudio Mineralógico sistemático
- Correlación de ensayes y composición mineralógica
- Control Mineralógico
- Control Mineralógico

METALURGIA

- Discusión y elección de un método de beneficio
- Pruebas Metalúrgicas de Laboratorio
- Pruebas a Nivel de Planta Piloto
- Optimización de parámetros de operación

PLANTA INDUSTRIAL

Fig. N° 1
una opción de beneficio, está sintetizado en la tabla No. 1, con un ejemplo bastante conocido citado por G. Rehwald relacionado a la recuperación del oro de acuerdo al tipo de ocurrencia.

3. MICROSCOPIA DE LUZ REFLEJADA APLICADA A LA FLOTACIÓN

Gran parte de la práctica del proceso de flotación está dedicada a minerales que por su comportamiento a la luz, se les puede calificar como minerales opacos y muchos de ellos caen dentro del grupo de sulfuros y sulfosales. Por esta razón el método de la microscopía de luz reflejada es ampliamente aplicado en el estudio de las menas con estos minerales.

La información previa requerida para realizar con éxito el proceso de beneficio comprende:

a. Información Composicional

En primera instancia es necesario conocer a qué mineral o minerales está ligado el elemento que finalmente se va a beneficiar.

Existen menas en las que debido a procesos de oxidación posterior, sus minerales no responden al proceso de flotación, ocasionando grandes pérdidas. Por este motivo la tecnología de beneficio, cuenta actualmente con procesos mixtos que permiten el tratamiento de menas oxidadas, para lo cual se hace todavía más imperiosa la colaboración del mineralogista, con la información del grado de oxidación presente en un yacimiento y las nuevas especies formadas.

Información valiosa constituye el tipo de clivaje de los minerales ya que ello tiene gran importancia en la molienda y producción de finos.

Finalmente, se debe tener en cuenta los requerimientos de la comercialización de concentrados y por lo tanto el mineralogista está obligado a reportar cualquier mineral que genere castigos en la venta del producto. Información adicional sobre propiedades magnéticas, peso específico, solubilidad de los minerales es determinante para la elección del método de beneficio.

b. Información textural

Debido a que la mayor parte de estudios aplicados a los procesos de flotación trabajan con la mena reducida a partículas, * se tratará a continuación las características geométricas de las mismas.

* El término “partícula mineral” se usa para estar de acuerdo con el lenguaje de los metalurgistas y es equivalente a la expresión “gramo minerales” usada por los mineralogistas.
<table>
<thead>
<tr>
<th>Método de beneficio</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCURRENCIA</td>
<td>Oro Nativo</td>
<td>Oro Nativo</td>
<td>Oro Nativo</td>
<td>Oro Nativo</td>
<td>Oro Nativo</td>
<td>Oro Nativo</td>
<td>Oro Nativo o en solución sólida con sulfuros</td>
</tr>
<tr>
<td></td>
<td>teñido o con costas de alteración</td>
<td>Limpio</td>
<td>Limpio</td>
<td>Limpio</td>
<td>Limpio</td>
<td>Limpio</td>
<td></td>
</tr>
<tr>
<td>TAMANO DE GRANOS</td>
<td>Muy fino</td>
<td>Grueso fino</td>
<td>Grueso fino</td>
<td>Grueso fino</td>
<td>Finamente dispersado</td>
<td>Complectamente fino</td>
<td>Extremadamente fino</td>
</tr>
<tr>
<td></td>
<td>grueso</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASOCIACIÓN FRECUENTE</td>
<td>Libre o en gangas</td>
<td>Libre o en gangas</td>
<td>Predominantemente en gangas</td>
<td>Predominantemente en gangas</td>
<td>Predominantemente en gangas</td>
<td>Con gangas - principalmente</td>
<td>En Sulfuros</td>
</tr>
<tr>
<td>PRESENCIA DE SULFUROS</td>
<td>Ausentes o en cantidades pequeñas</td>
<td>Cantidad pequeñas</td>
<td>Ausentes o en cantidades pequeñas</td>
<td>Ausentes o en cantidades pequeñas</td>
<td>Ausentes o en cantidades pequeñas</td>
<td>Presentes pero sin intervenir con III</td>
<td>Conteniendo Au recuperable por procesos metalúrgicos</td>
</tr>
<tr>
<td>GANGAS</td>
<td>Cuarto; arcillas en cantidades pequeñas</td>
<td>Cz, predominante</td>
<td>Ausencia de minerales que contienen Cu, arcillas no permitidas</td>
<td>Sin minerales que interfieran II o III</td>
<td>No significativas</td>
<td>Sin minerales que interfieran III</td>
<td>No significativas</td>
</tr>
</tbody>
</table>

(*) Tabla confeccionada según los datos de G. Rehwald (En Applied Ore Microscopy).

I : Concentración por gravedad.
II : Amalgamación.
III : Cianuración.
IV : Amalgamación y cianuración con o sin concentración por gravedad.
V : Flotación y cianuración de concentrados.
VI : Flotación y cianuración de colas.
VII : Flotación.
b 1. Rasgos texturales internos de una partícula mineral

Partículas Homogéneas. Mineralógicamente hablando, es raro encontrar partículas verdaderamente homogéneas. En gran parte de los casos se va a tener minerales acompañados por la cristalización de fases minoritarias, que resultan en la formación de inclusiones, desmezclas, etc.

En muchos de estos casos, una molienda primaria, económicamente razonable no logra dar buenos resultados, teniéndose que recurrir, cuando se trata de minerales valiosos, a moliendas de los concentrados primarios, sobre todo si el mineral anfitrión es poco deseable para el beneficio posterior del metal.

Partículas Heterogéneas. Son bastante frecuentes en las menas y en algunos casos, cuando no se tiene un estudio microscópico previo, pueden ocasionar serias interrogantes al metaturgista.

Las inhomogeneidades en una partícula mineral pueden ser de tipo físico o químico. Al primer tipo corresponden principalmente las maclas, las imperfecciones en la estructura cristalina y porosidad. Las inhomogeneidades de tipo químico se manifiestan en forma ordenada como zonamientos o bandecamientos y en forma muy irregular dentro de la partícula mineral.

Las imperfecciones físicas o químicas de los minerales afectan tanto la molienda como la flotación de las partículas sometidas a los procesos de flotación.

Finalmente, se podría considerar como partículas heterogéneas aquellas que contienen inclusiones. Muchos minerales portadores de elementos valiosos, tales como minerales del grupo del platino, oro, sulfosales de plata, se encuentran como inclusiones.

En la tabla No. 2 se reúnen las inclusiones más frecuentes y sus minerales albergantes.

b 2. Rasgos texturales externos de una partícula mineral

Los rasgos texturales externos de una partícula mineral, abarcan los siguientes tres aspectos fundamentales:

— Tamaño del grano.
— Forma del grano.
— Intercrecimientos.

Forma del grano

Por diferentes variables en el proceso de cristalización, los granos minerales pueden o no conservar la forma plana de las caras corres-
pondientes a un cristal individuo. El caso más general está representado por agregados de las formas más diversas. La presencia de granos limitados por contornos muy complicados, son de especial importancia en la caracterización de la mesa ya que generalmente constituye la causa de bajos grados de liberación.

Tamaño del grano

En la práctica el concepto de tamaño de grano tiene diferente significado para el mineralogista y para el ingeniero de beneficio. Así para una mena finamente granular de galena una partícula puede estar compuesta de varios granos pequeños, sin embargo para el metalurgista es una partícula. El tamaño del grano puede ser homogéneo o heterogéneo variando de uno a otro tipo, de acuerdo a la génesis del yacimiento.

Intercrecimientos

Los minerales se presentan en una amplia gama de arreglos geométricos (intercrecimientos) que son particulares para cada tipo de yacimiento.

TABLA No. 2

EJEMPLOS DE INCLUSIONES FRECUENTES

<table>
<thead>
<tr>
<th>Mineral albergante</th>
<th>Mineral como inclusión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bornita</td>
<td>Cobre Gris</td>
</tr>
<tr>
<td>Calcopiritina</td>
<td>Bornita, cubanita, millerita, pirrotita, esperrilita, moncheita</td>
</tr>
<tr>
<td>Calcosita</td>
<td>Bornita, estromeyerita</td>
</tr>
<tr>
<td>Cobre Gris</td>
<td>Calcopiritina</td>
</tr>
<tr>
<td>Cromita</td>
<td>Hematita, ilmenita</td>
</tr>
<tr>
<td>Cuprita</td>
<td>Cobre Nativo</td>
</tr>
<tr>
<td>Enargita</td>
<td>Calcopiritina</td>
</tr>
<tr>
<td>Esfalerita</td>
<td>Calcopiritina, pirrotita, estannita</td>
</tr>
<tr>
<td>Estannita</td>
<td>Esfalerita, cubanita, calcopiritina</td>
</tr>
<tr>
<td>Galena</td>
<td>Argentita, buornonita, freibergita, pirargirita-proustita, Ag Nativa, etc.</td>
</tr>
<tr>
<td>Linneita</td>
<td>Millerita</td>
</tr>
<tr>
<td>Piritita</td>
<td>Oro</td>
</tr>
<tr>
<td>Pirrotita</td>
<td>Valleriita, pentlandita, esperrilita</td>
</tr>
<tr>
<td>Cromita</td>
<td>Platino, esperrilita</td>
</tr>
</tbody>
</table>
Desde el punto de vista de la molienda podemos clasificar los intercrecimientos en forma global como simples y complejos. Los intercrecimientos simples están representados por arreglos de minerales cuyos contactos a nivel de una partícula son rectos o ligeramente curvados. Contrariamente, los intercrecimientos complejos son todos aquellos arreglos con contactos mixtos muy caprichosos o inclusiones muy finas de difícil liberación. Los intercrecimientos complejos dan como resultados gran producción de mixtos en los concentrados o una excesiva producción de finos, sobretodo cuando los minerales no están suficientemente cohesionados.

Para los efectos de cuantificación es necesario agrupar los intercrecimientos de una mena en tipos. Para esta tarea existen tablas confeccionadas especialmente para el estudio de problemas de beneficio. Una de ellas es la tabla de G. C. Amstutz, publicada por el American Geological Institute (1954-1960), en la cual se señalan 9 tipos básicos de intercrecimientos (ver fig. No. 2).

Sin embargo, es conveniente confeccionar un pequeño atlas de intercrecimientos de la mena que se está tratando, el cual debe ser hecho a medida que se va realizando las investigaciones sistemáticas previas a los estudios de control mineralógico. Esta documentación gráfica permitirá al metalurgista conocer en forma objetiva el mineral que va a tratar y las limitaciones texturales para la liberación de partículas.

4. SISTEMATICA DE LOS ESTUDIOS MICROSCOPICOS APLICADOS A FLOTACION

La Preparación de muestras

Gran parte del éxito de los estudios que requieren mediciones cuantitativas, depende de la preparación de muestras. Para la confección de secciones pulidas se deben tener en cuenta las siguientes recomendaciones:

— Separar el material en diversas fracciones granulométricas.
— Montar las partículas en resinas de fraguado en frío tratando de evitar efectos de sedimentación.
— No usar materiales cuyo fraguado requiera calor, ya que algunos minerales son sensibles a incrementos de temperatura, aún por debajo de 100º C.
— Evitar las aglomeraciones de material ya que puede ser una fuente de error en los análisis cuantitativos.
TIPOS DE INTERCRECIMIENTOS

1a simple
1b ameboide
1c gráfico
1d diseminado

2a corona
2b concéntrico
3a veteado
3b lamelar
3c reticular

FIG 2
Amstutz 1981.
Directivas para el estudio de las muestras

La información composicional y textural es posible de ser cuantificada por el método de conteo de puntos. Este se basa en una relación que existe entre la cantidad de puntos "explorados" en una muestra y el contenido mineralógico de la misma. Para iniciar los estudios cuantitativos, es necesario evaluar los reportes microscópicos previos para evitar sorpresas durante el momento de conteo, que debe ser un trabajo de rutina, cuando el microscopista conoce la mena a la que está sometiendo a análisis cuantitativos. El microscopista debe contar con la mayor información posible de la mena, tanto la de carácter mineralógico, como la información química (leyes). Todo esto será de valiosa ayuda en la interpretación de resultados. Cuando se trate de cuantificar tipos de intercrecimientos es necesario contar con un patrón o tabla de tipos de intercrecimientos ya sea tomada de la literatura técnica o elaborada por el propio usuario.

La microscopía aplicada al proceso de flotación comprenderá el estudio relacionado a las fases de quebrantamiento, molienda, clasificación, separación y concentración.

Los siguientes criterios y finalidades son válidos para el trabajo sistemático de control mineralógico:

- Los estudios deben empezar con un análisis composicional-textural del material de cabeza, el que tendrá como finalidad presentar un panorama de las posibilidades de recuperación y contrastar con los resultados en el concentrado.

- Los estudios de los productos de clasificación, se harán comparando la distribución granulométrica para cada mineral, con la finalidad de tener un control de la eficiencia del proceso.

- El estudio de los productos de flotación nos dará información valiosa sobre la presencia de minerales no deseados en el concentrado. El análisis cuantitativo de intercrecimientos nos dirá si hay razones mineralógicas para la presencia de tales impurezas.

- En el caso de que los concentrados no alcancen el grado esperado, el estudio de los relaves es de vital importancia. Las causas de pérdidas son múltiples y en muchos casos son evitables, si se dispone de la asistencia de un mineralogista.
5. CONCLUSIONES

Es importante que las instituciones de Investigación Minera, pongan especial énfasis en los estudios mineralógicos, para solucionar los problemas metalúrgicos que presentan cierto tipo de menas.

La implementación de un gabinete básico de microscopía, no representa una inversión fuerte con respecto a los beneficios que se pueden obtener. El problema más serio estaría, tal vez, representado por la preparación de mineralogistas, familiarizados con los problemas metalúrgicos y que sepan traducir los resultados en aportes para sus colegas metalurgistas. Esto conlleva, naturalmente, una preparación adecuada a través de los cursos de microscopía, dedicando algunos capítulos para el ejercicio de este tipo de problemas.

6. BIBLIOGRAFÍA