PROPUESTA DE DISEÑO DE UN CONTADOR HEMATOLÓGICO DIGITAL

Max Ever Ponce Soldevilla
maxponce@email.com

Estudiante de maestría de la Facultad de Ingeniería Electrónica de la UNMSM,
Lima, Perú

Resumen: La falta de una política de desarrollo y la importación de equipos médicos ha propiciado que la industria de equipos médicos en nuestro país sea inexistente. Motivado por el deseo de contribuir con soluciones acordes al desarrollo de nuestro país y a la situación económica actual, se propone el diseño de un Contador Hematológico Digital, el cual puede competir con los equipos importados a un costo menor, contribuyendo de esta manera a lograr el progreso de la mayoría de centros de salud que en la actualidad utilizan contadores mecánicos, debido a la dificultad de poder adquirir el modelo digital.

I. CONTADOR HEMATOLÓGICO DIGITAL

1.1 Introducción.

La sangre es un tejido cuyas células, están en suspensión en la sustancia intercelular, que es líquida y recibe el nombre de plasma. Cuando se examina bajo el microscopio, se observan una clase de corpúsculos entre los que se puede mencionar a: glóbulos rojos, glóbulos blancos (linfocitos, leucocitos monocelulares, granulocitos), hematoblastos, plaquetas, los cuales se encuentran diseminados en todo el plasma sanguíneo [Vidal, 1984].

Todo centro de salud como equipo necesario para comenzar a realizar ciertos análisis clínicos requiere de un Microscopio (como el mostrado en la figura 1) acompañado de un Contador Hematológico, el cual registra la cuenta de los elementos que conforman el fluido bajo estudio.

En la actualidad la mayoría de hospitales públicos en el interior del país utilizan Contadores Hematológicos mecánicos, debido a que uno digital importado es relativamente costoso, nuestra propuesta intenta que el equipo este al alcance de éstos centros de salud.

II. DESARROLLO DEL TRABAJO

2.1 Funcionamiento

El diseño del Contador Hematológico Digital, tal como se muestra en la figura 2, es un circuito compuesto por varios módulos independientes, los cuales están encargados de contar la cantidad de veces que una persona, en este caso el especialista en el área médica, ingresa los datos a través de los diferentes pulsadores. El estado de la cuenta se visualiza en displays de siete segmentos, permitiendo la cuenta en línea hasta el número 999.
Los datos ingresan a través de pulsadores. Los mismos que cuentan con un circuito antirrebote que impide el desgaste mecánico y controla el falso contacto propio del pulsador. El circuito también proporciona la facilidad de borrar la cuenta o de resetearla. No utiliza parte móviles y es compacto, gracias a la adopción de una técnica digital conocida como multiplexación por división de tiempo (TDM).

2.2 Diagrama de Bloques

En la figura 3, se muestra el diagrama de bloques del contador hematológico. El sistema consta, de seis módulos, los cuales funcionan independientemente; los datos ingresan a través de los pulsadores los cuales se recepcionan en cada módulo de contadores, y visualizan el conteo a través de sus respectivos displays, cada módulo envía una señal de control que se encarga de llevar la suma total de todos los datos ingresados, cuando la suma es igual al valor de 100 o múltiplo de este valor, el circuito emite un sonido esto es para informarle al especialista que la cuenta alcanza un valor de 100 ó un múltiplo de éste. Así, el especialista puede llevar un control de la cuenta sin la necesidad de observar el equipo médico.

El número de pulsos que ingresan al circuito, son registrados por tres contadores, el primero registra las unidades, el segundo las decenas y el tercero las centenas.

Por ejemplo, si han ingresado 476 pulsos, en las salidas del primer contador se tendrá en código BCD: 0100 (4), en las salidas del segundo: 0111 (7) y en las salidas del tercero: 0110 (6).

Estos tres códigos se rotan secuencialmente en las salidas del contador 14553, apareciendo cada uno durante una pequeña fracción de tiempo (= 1.6 ms). Esta forma de presentar información digital se conoce como multiplexación por división de tiempo.

Las salidas del contador alimentan un Decodificador 4543B, el cual convierte cada código BCD en un código de siete segmentos, que excitán secuencialmente a los displays encargados de visualizar las unidades, decenas y centenas del cómputo. [Curso Practico de Electrónica Digital, 1990]

En la figura 4, se muestra el diagrama esquemático del módulo del contador. Los datos ingresan a través de pulsos del circuito antirrebote se aplican al circuito integrado 14553.

Figura 3. Diagrama de bloques del circuito.

2.3 Diseño y Operación

Luego que la sangre es centrifugada, el plasma es puestó bajo el microscopio, visualmente el especialista por cada tipo de célula que desea contar presiona el pulsador correspondiente, registrándose de esta manera el cómputo.

El contador de pulsos se desarrolla alrededor del contador CMOS BCD 14553. Este chip, consiste de 3 contadores BCD conectados en cascada. Cada uno asociado a un registro de almacenamiento de 4 bits. [Tocci, 1993]

Figura 4. Módulo de contador independiente

Para iniciar la cuenta a partir de 000 en cualquier momento, debe pulsarse el botón de borrado. De este modo, el C.I. 14553 recibe una señal de control y todas las salidas BCD de sus contadores internos se hacen iguales a 0000.

Las salidas BCD del 14553 están conectadas a las entradas del decodificador CD4543 como se puede observar en la figura 2. Las salidas de este último, a su vez, manejan los tres displays para la presentación de la cuenta.

Para la visualización de los displays el equipo electrónico trabaja a una frecuencia de 1.2 Khz., cada uno de estos displays es visualizado a una taza de 400 veces por segundo, lo cual es suficiente para dar la ilusión óptica, que todos permanecen iluminados al mismo tiempo aunque la información este multiplexada. Este método de presentar
El circuito que se encarga de indicar el momento en que a cuenta está en un múltiplo de 100, para lo cual el contador de control que recibe los pulsos de la etapa sumadora y una vez que llega al valor indicado emite un pulso que es recibido por un circuito integrado con el cual se gradúa el tiempo para la emisión del sonido.

2.4 Características de Equipo

Datos técnicos generales:

- Chasis de Acero
- Tipo Plano: 6 teclas de 3 dígitos cada uno.
- Capacidad máxima de lectura 999.
- Alarma activada cada 100 unidades
- Alimentación: 220V 50/60 Hz. ó batería 12V.
- 4.5 vatios de consumo
- Fusible de protección
- Peso: 1.3 Kgrs. Aprox.
- Dimensiones: 31 x 14 x 10 cm.

III. MEJORAMIENTO DEL DISEÑO

Se está construyendo un equipo similar, más robusto y confiable, utilizando una tecnología más moderna, actual y acorde con las nuevas tecnologías como son los microcontroladores. Así también se lograría la modificación de la etapa de salida que esta conformada por displays, por una sola pantalla de cristal líquido LCD, con la cual se obtendrían considerables mejoras en el consumo de potencia así como también se reducirían las dimensiones del equipo, ver figura 6.

Además se proyecta construir un sistema que realice la medición independiente del especialista, sometiendo a la muestra bajo estudio a técnicas de procesamiento digital de imágenes, con lo cual se lograría mayor confiabilidad y datos computarizados.
IV. RESULTADOS Y CONCLUSIONES

Se implementó un equipo que funciona de acuerdo al diseño plantead y que es capaz de competir en el mercado nacional debido a que posee un costo mucho menor a los importados.

El Contador Hematológico diseñado no presenta dificultad al momento de su manipulación, posee una excelente visualización de los resultados, en oposición a los equipos mecánicos.

Gracias a la utilización de integrados, es compacto, modular, lo que permite una fácil detección de fallas y reparación.

Posee un mayor tiempo de vida ya que siendo digital no posee partes mecánicas que se corroen y oxidan fácilmente.

V. REFERENCIAS BIBLIOGRÁFICAS.


VI. AGRADECIMIENTO

Al Ingeniero Javier Soldevilla Bellido por el apoyo y colaboración para el desarrollo de este proyecto.