RESUMEN

Se presenta una reseña de los efectos del fenómeno "El Niño 1997-98" en los recursos pesqueros del ecosistema de aforramiento peruano, dando especial énfasis a los cambios en los patrones de distribución y abundancia de los recursos anchoveta, sardina y merluza; y a los cambios en la autoecología de los mismos recursos. Finalmente, se comenta sobre las similitudes y diferencias de los efectos de este fenómeno con otros eventos de la misma naturaleza.

Palabras clave: Recursos pesqueros, distribución, reclutamiento, El Niño 1997-98, Perú.

ABSTRACT

It is presented a review of "El Niño 1997-98" effects on fishery resources of Peruvian upwelling ecosystem, given emphasis to the changes in distribution and abundance patterns of anchovy, sardine, and Peruvian hake; and autoecology changes of the same resources. Finally, it is analyzed similarities and differences of this phenomenon effect with other events of the same nature.

Key words: Fishery resources, distribution, recruitment, El Niño 1997-98, Peru.

INTRODUCCIÓN

Los eventos "El Niño" se dan en el Océano Pacífico recurrentemente, alterando todo el sistema de circulación de corrientes y la dominancia de las diferentes masas de agua. Estos cambios inducen patrones de respuesta diversos en los recursos pesqueros de la costa peruana.

En el subsistema pelágico, la anchoveta inicialmente se concentra cerca de la costa aumentando su vulnerabilidad en función a la intensidad del evento, luego si éste continúa acentuándose tiende a dispersarse hacia el sur y luego hacia mayor profundidad, coincidentemente con la profundización de la termoclina. En cambio, la sardina, que tolera mejor condiciones cálidas se hace más frecuente en el medio compartiendo su dominancia con el jurel y la caballa, además de especies "foráneas" como machete de hebra (Ophistomona libertate), sardina rodena (Etrumeus teres), ayamarca (Cetengraulis mysticetus) y jurel fino (Decapterus macrosoma), entre las más importantes.

En el subsistema demersal, la merluza se dispersa inicialmente hacia el sur y luego se profundiza. La dominancia de esta especie cambia, cediendo su importancia a especies como falso volador (Prionotus stephanophrys) y otros triglidos, serránidos y sciánidos propios de la Provincia Panameña.

En la zona costera también se producen cambios notables. Así, los camarones peneidos y las poblaciones de concha de abanico (Argopecten purpuratus) aumentan significativamente, mientras que los bancos
de erizos y mitilidos se reducen notablemente.

El presente trabajo analiza los cambios en los patrones de distribución y abundancia de los recursos pesqueros; y los cambios en la autoecología de los mismos. Para el análisis se ha utilizado la información oceanográfica y pesquera generada por los cruceros de investigación y laboratorios costeros del Instituto del Mar del Perú, y las estadísticas de las diversas pesquerías.

IMPACTO SOBRE LOS PRINCIPALES RECURSOS PESQUEROS

La anchoveta (*Engraulis ringens*)
- Distribución latitudinal y longitudinal

La presencia de condiciones cálidas, imperantes a partir de marzo en el norte del Perú, determinaron inicialmente el replegamiento de la anchoveta en la costa, concentrándose en la franja costera de las 20 millas, haciéndola más accesible y vulnerable a la flota pesquera. En un principio, se observaron mayores concentraciones entre los 7 y 9° LS, incrementándose luego las capturas entre los 11 y 14° LS, como resultado del desplazamiento de los cardúmenes hacia el sur de Chimbote. Esta situación se acentuó en mayo y junio, persistiendo hasta el inicio de la veda en julio, con predominio de las capturas al sur de los 13° LS, siendo Tambo de Mora, Pisco e Ilo los principales puertos de desembarque. Vale destacar que durante todo el período transcurrido entre abril y julio (inicios de veda), se produjo un desplazamiento de anchoveta a lo largo de toda la costa peruana (Paita-Ilo), con una predominancia de la zona sur en los meses de junio y julio.

Con información del Crucero de Evaluación de Recursos Pelágicos BIC HUMBOLDT 9709-10 (setiembre-octubre), se demostró una amplia distribución de la anchoveta entre los 6° LS y el extremo sur del Perú, observándose núcleos de mayor concentración entre Callao y Huarmey (12-10° LS) y al norte de Salaverry. Áreas de menor importancia se detectaron entre Huarmey y Salaverry (10-8° LS). En general, durante setiembre y octubre, se la localizó a lo largo de toda la costa peruana, entre Paita y el extremo sur del Perú, a distancias variables hasta las 50 millas.

Por su parte, la pesquería indicaba para octubre una distribución dispersa hasta las 40 mn entre Chimbote y Pimentel, mientras que en el sur, entre Huarmey y Pisco se observó mayores concentraciones dentro de las 20 mn. Hacia el sur de San Juan, la anchoveta estuvo más dispersa en la franja costera de las 10 mn.

En noviembre se observó un desplazamiento de cardúmenes de anchoveta de la región norte hacia la zona central, hecho que se acentuó en diciembre coincidiendo con un aumento significativo de anomalías de TSM en la región norte. Durante este mes se observaron mayores concentraciones entre Cerró Azul (13° LS) y el extremo sur en la franja costera de las 10 mn. Sólo en Ilo la distribución fue más amplia hasta las 30 mn.

En diciembre los patrones de distribución y abundancia fueron similares al mes anterior, pero con presencia de esta especie desde Paita a Ilo.

- Distribución vertical

Como consecuencia del calentamiento del medio marino, que afectó hasta profundidades mayores a los 200 m, la anchoveta se localizó inicialmente por debajo de los 10 m en abril, para luego en mayo, junio y julio, encontrarse a profundidades mayores a los 50 y 70 m. En setiembre se le localizó principalmente entre 2 y 60 m de profundidad, manteniéndose este patrón en octubre y noviembre. Durante diciembre y enero, la profundización de la especie continuó, inclusive por debajo de los 100 m de profundidad.

- Reclutamiento y estructura por tamaños

Durante 1997 y luego del levantamiento
de la veda de verano (abril a julio), la estructura de tallas de la captura de anchoveta mostró una predominancia de ejemplares adultos entre 14 y 16 cm, y una escasez de peces jóvenes, lo que indicaría que el primer reclutamiento esperado para el otoño de 1997, probablemente fue bajo, inferior al promedio.

Al igual que en otros eventos “El Niño”, se observó cambios en la estructura por tallas en los desembarques para las diferentes áreas de distribución, evidenciando una migración hacia el sur de los 14° LS de ejemplares correspondientes al stock norte-centro.

El crucero de evaluación (BIC HUMBOLDT 9709-10) evidenció una distribución de tallas entre Pisco y Callao (14-12° LS) con ejemplares entre 11 y 18,5 cm, predominando la fracción correspondiente a los ejemplares de 14,5 a 18,5 cm. Se observó un segundo pico entre 11 y 13,5 cm, correspondiente a los reclutas de un año. Entre Callao a Salaverry (12-8° LS) permanece la misma estructura, pero entre 6 y 8 cm se observa un tercer grupo de prereclutas que corresponderían al desove del verano de 1997.

Durante diciembre de 1997 se observó una predominancia de ejemplares juveniles entre Cerro Azul y Pisco con tallas modales entre 7,5 y 10 cm. Al sur de Pisco se observó una mezcla de juveniles con adultos destacando modas entre 15,5 y 16 cm y entre 8,5 y 12 cm. Esto corrobora lo hallado en setiembre-octubre con tallas entre 6 y 8 cm (Figs. 1 y 2).

Reproducción

En la región norte, el índice gonadosomático (IG) se presentó durante el desove de verano por encima del promedio patrón, mostrando luego a partir de mayo, una tendencia a mantenerse por debajo del promedio histórico, sobre todo durante el período de reproducción de invierno-primavera (Fig. 3). En la región sur el comportamiento fue similar. De acuerdo a esto podemos afirmar que el desove de verano se realizó en condiciones de normalidad con índices por encima del promedio.

En setiembre, durante el crucero de evaluación, se observó al stock norte-centro en un franco proceso reproductivo de invierno primavera, con el 75% de ejemplares en estadios (V y VI) en toda el área evaluada, Pisco - Salaverry (14-8° LS). Al respecto se observó que este desove presentó un retraso de dos meses presentándose los picos máximos en octubre y noviembre, mientras que
normalmente los máximos se dan en agosto y setiembre. Asimismo, los niveles de IG fueron más bajos que el promedio patrón, pero estuvieron en niveles similares a los de verano.

Este retraso de dos meses en el desove de invierno, probablemente signifique un retraso en el desove de verano 1998, el cual podría estar dándose con mayor intensidad en los meses de febrero y marzo, extendiéndose inclusive hasta abril.

- Cambios en el peso corporal y contenido graso

Entre mayo y diciembre de 1997, a consecuencia de “El Niño”, se ha observado
una reducción del peso medio de los ejemplares del stock norte-centro y consecuentemente del contenido de grasa visceral. Similar comportamiento ha presentado el stock sur.

La sardina (*Sardinops sagax sagax*)
- Distribución latitudinal y longitudinal
 Durante el verano de 1997 la sardina estuvo ubicada principalmente en la región norte, luego ha registrado desplazamientos latitudinales en forma paulatina de norte a sur, habiéndose trasladado los núcleos de concentración en primer lugar al área comprendida entre Chimbote y Salaverry (8-9° LS), para localizarse en la actualidad (enero, 1988) con núcleos de mayor abundancia entre Huarmey y Callao (10-12° LS) por fuera de las 30 millas. Verticalmente se ubicó entre 2 a 55 m.

 Durante el último trimestre de 1997 la sardina estuvo ampliamente distribuida hasta las 90 mn, principalmente entre Chimbote y Pimentel y, zonas de mayor concentración, en la zona central.

 En la actualidad se la ubica dispersa y ampliamente distribuida entre Pimentel e Ilo a distancias comprendidas entre 10 y 90 mn de la costa.

- Reclutamiento y estructura por tamaños
 A nivel de todo el litoral se encontró tallas entre 5 y 32 cm, con grupos de tamaños entre 26 a 29 cm, 14 a 17 cm, y entre 7 a 10 cm. Durante el verano la pesquería de la región norte incidió principalmente sobre el stock adulto. En el otoño éste se distribuyó tanto al norte como en el centro. Durante el invierno, en pleno evento "El Niño", en la zona central se hicieron evidentes prerreclutas entre 8 y 11 cm y entre 14 y 17 cm. El mismo patrón se ha observado en la primavera en las regiones norte y centro. Al sur estuvieron presentes ejemplares adultos durante el invierno y la primavera. En general, se puede concluir que durante 1997, los reclutamientos de esta especie se han visto favorecidos por las condiciones imperantes.

 - Reproducción
 La sardina durante el verano y otoño, enero a mayo, presentó índices gonadosomáticos significativamente por encima del promedio patrón. Con la manifestación más marcada de "El Niño", los mismos índices se presentaron ligeramente por debajo del promedio. Entre agosto y noviembre se ha observado un segundo pico de desove, pero que se ha mantenido alrededor del promedio patrón (Fig. 4).

 - Cambios en el peso y el contenido graso
 En lo que va de “El Niño”, se ha observado cambios significativos en el peso y contenido graso de los individuos. Se tiene información de las empresas de producción de conservas, que el contenido de grasa bajó alrededor del 1%. En la actualidad (febrero 1998), nos comunican de un incremento del contenido graso del 4%, en promedio.

El jurel (*Trachurus picturatus murphyi*)
- Distribución horizontal y vertical
 Durante 1997 y en especial entre abril y setiembre, esta especie estuvo distribuida entre Salaverry y Pisco (8-14° LS), con núcleos de mayor abundancia entre Huarmey y Callao (10-12° LS), entre 50 y 80 mn. Verticalmente se le encontró entre los 8 y 65 m de profundidad. Durante los últimos meses de 1997 y enero, mantiene una amplia distribución, entre Paita y Pisco, con mayores concentraciones en la zona central. En el Puerto de Paita se le está pescando conjuntamente con merluza a profundidades entre 150 y 250 m.

- Reclutamiento y estructura por tamaños
 Durante el crucero de evaluación realizado entre setiembre y octubre, se ubicó a esta
especie con tallas entre 6 y 36 cm de longitud total. Se observa en la distribución tres grupos modales entre los 6 y 14 cm (prerreclutas), entre los 25 y 29 cm y, entre 30 y 36 cm. El grupo de ejemplares más pequeños fue hallado en la zona costera, dentro de las 20 mn.

La caballa (Scomber japonicus)

- Distribución horizontal y vertical

 En setiembre se la ubicó ampliamente distribuida entre Salaverry y Pisco (8-14° LS), con nucleos de mayor concentración entre Huarmey y Callao.

 Durante el crucero de evaluación realizado durante setiembre-octubre, las abundancias observadas fueron las segundas en importancia después de la anchoveta.

 En la actualidad presenta aún una amplia distribución en el mar peruano a distancias comprendidas entre las 10 y 100 mn. Mantiene sus mayores concentraciones entre Huarmey y Pisco en distancias por fuera de las 60 mn.

- Reclutamiento y estructura por tamaños

 La caballa se halló con tallas entre 8 y 35 cm con dos grupos modales bastante conspicuos, uno juvenil entre 8 y 19 cm, de distribución más costera; y otro de mayor tamaño entre los 24 y 34 cm, de distribución más amplia hasta por fuera de las 50 mn.

La merluza (Merluccius gayi peruanus)

La merluza durante el verano de 1997 se presentó anormalmente concentrada al norte de los 6° LS, debido a una fuerte retracción de la Contracorriente Subsuperficial de Cromwell, que redujo significativamente las áreas de distribución de esta especie, haciendo más accesible y vulnerable a la especie.

A partir de abril, las áreas se empezaron a ampliar, alcanzando sus máximos niveles en junio, julio y agosto. Coincidentemente, el recurso se dispersa hacia al sur, desplazándose los nucleos de mayor concentración a los 7° LS. Esto ha reducido las posibilidades de pesca
de la flota de arrastre costero de Paíta, pues su radio de acción es limitado. Sólo accedieron al recurso los denominados BAME y BAF, Buques Arrastreros de Mediana Escala y Buques de Arrastre-FACTORIA respectivamente. Este patrón de distribución latitudinal persistió hasta diciembre. Durante enero se observó, en esta especie, una tendencia a recuperar sus áreas habituales de distribución al norte de los 6° LS.

Verticalemente, entre mayo y junio, durante el crucero de evaluación de merluza (BIC HUMBOLDT 9705-06), se detectó una profundización de cardúmenes de merluza hasta por debajo de los 1000 m. En general, durante 1997 esta especie se ha ubicado en áreas más al sur de lo normal y a profundidades mayores a las usuales.

- Reclutamiento y estructura por tamaños

La composición de tallas de las capturas de merluza de la flota arrastrera durante 1997, al igual que en años anteriores ha presentado un alto porcentaje de ejemplares por debajo de la talla mínima (35 cm LT). Esto debido principalmente a una alta disponibilidad de los mismos en las áreas de pesca de la flota arrastrera. La mayor incidencia de ejemplares juveniles, inclusive por encima del 50% en las capturas, correspondió al área de Salaverry, siendo la flota de arrastre costero la que presentó un porcentaje mayor debido a que sus operaciones fueron más costeras (Fig. 5).

Langostinos (Xiphopenaeus riveti, Penaeus spp.)

- El conjunto de especies conocido con el nombre genérico de langostinos (mal empleado), constituye una pesquería habitual en la zona de Tumbes extendiéndose ocasionalmente, en algunos veranos hasta la zona de Pariñas y Sechura. Durante eventos “El Niño” extiende su distribución hasta Sechura e inclusive más hacia el sur en función a la intensidad y duración del evento (Fig. 6). En enero de 1997, su comportamiento fue normal encontrándose distribuido en sus áreas habituales. En marzo se le ubicó en la zona de Paíta, y a partir de allí fue extendiéndose hacia el sur, para ubicarse en la actualidad con desembarques significativos, entre la zona de Chicama y Chimbote, asociado a una prolongación de la isoterma de 26°C hacia el sur. La especie predominante en los

![Figura 5. Distribución de tallas de merluza, durante 1997.](image-url)
desembarques de la pesca artesanal de la zona costera o de aguas someras ha sido principalmente el “camarón barbudo” (*Xiphopenaeus riveti*). En aguas más profundas, se ha encontrado principalmente el “camarón blanco” o “pomada” (*Penaeus californiensis*), siendo capturado en una mayor proporción por la flota costera de arrastre de Paita.

Concha de abanico (*Argopecten purpuratus* **)**

Esta especie reacciona positivamente frente a eventos “El Niño”, durante 1997 se observó que los bancos naturales de Bahía Independencia, Samanco, Lobos de Tierra y Sechura mostraron rendimientos sostenidos en sus capturas como producto de un mejor asentamiento de “semillas” de esta especie. Se observó asimismo, una mayor abundancia de juveniles en las áreas en mención. De todas formas, es preciso aclarar que las abundancias observadas en los lugares mencionados no son comparables con las tenidas durante 1983 y posteriormente a este evento (Fig. 7).

Calamar gigante (*Dosidicus gigas* **)**

Respecto a esta especie aún no se recuperan los niveles de desembarque de los años previos a 1996. Es difícil precisar qué efectos habría tenido este Niño sobre la población de este recurso. De todas formas, es necesario informar que la mayor disponibilidad de este recurso, y que sugiere una población mayor, se ha dado posteriormente al fenómeno “El Niño 1991-93”. A partir de estos hechos observados en el pasado inmediato, se podría inferir que posteriormente a este evento mejore la disponibilidad de este recurso (Fig. 8).

Cambios en la diversidad

En la zona costera de la costa peruana se ha observado un aumento significativo de la diversidad como producto de la introducción de especies de aguas oceánicas (Tab. 1); y de aguas ecuatoriales (Tab. 2); y a la extensión poco usual de la Contracorriente Subsuperficial de Cromwell hacia el sur. Las especies del litoral norte se desplazaron hacia el sur, resultando frecuentes en varios lugares

![Gráfico 6. Desembarque de langostino (1953-1997)](image)
de desembarque de la costa central y sur del Perú.

DISCUSIÓN

En años de contraste (fríos - El Niño), el comportamiento de los recursos es totalmente contrapuesto (Arntz y Tarazona, 1990). Durante años fríos, la anchoveta y otros recursos pelágicos como sardina, jurel y caballa se dispersan alejándose de la costa, ocupando áreas fuera de las 200 y 300 mn. Esto naturalmente reduce los índices de concentración (Q), la accesibilidad y vulnerabilidad con la consiguiente disminución por pesca. Por el contrario, durante "El Niño", estas especies se concentran cerca de la costa aumentando su
concentración, su accesibilidad y vulnerabilidad lo que se refleja en altas capturas produciéndose una elevación significativa de la mortalidad por pesca. Este acercamiento a la costa es seguido de un desplazamiento de los recursos hacia el sur y de la profundización de los mismos, en función a la intensidad y duración del evento.

En lo que respecta a la merluza y otras especies del subsistema demersal sucede lo contrario, se dispersan profundizándose y desplazando sus núcleos de mayor concentración hacia el sur, en función a la intensidad y duración del fenómeno. Esto debido a que la mínima de oxígeno se desplaza hacia el sur ampliando el área de distribución de la especie (Espino et al., 1985) haciendo que la accesibilidad y vulnerabilidad del recurso disminuyan significativamente, reduciendo la mortalidad por pesca. En la práctica, se puede observar a través de los desembarques los cuales descienden significativamente durante estos eventos. Es decir, mientras que en el ambiente pelágico los recursos se concentran con “El Niño”, en el ambiente subsuperficial, los mismos se dispersan (Tab. 3).

A partir de esta somera revisión del comportamiento de los principales recursos y su pesquería se podrá esbozar una visión general sobre los efectos del fenómeno “El Niño 1997-98” y sus posibles consecuencias. En tal sentido, es adecuado hacer una enumeración de los principales hechos observados.

En cuanto al proceso reproductivo de la anchoveta, se observó que el índice gonadosomático en el verano fue más alto que el patrón normal, sobre todo en enero y febrero; esto ha significado quizá una respuesta de la especie como estrategia al advenimiento de un fenómeno como “El Niño”; sin embargo, el hecho de que exista la probabilidad de un mayor desove en verano no asegura la posibilidad de un mayor reclutamiento en la primavera siguiente. Esto dependerá que la sobrevivencia larval esté garantizada en función a una estabilidad ambiental, que no se ha dado durante este evento “El Niño”. En definitiva la magnitud de este reclutamiento no ha podido ser evaluada y lo único que se podría afirmar es que el desove no ha fracasado totalmente, existiendo indicios que el reclutamiento se estaría dando en el sur.

Por su parte, el desove de primavera se ha presentado desfasado en dos meses y se observa por debajo del promedio estacional, pero similar al patrón de verano. La presencia de prerreclutación producto de este desove se

<table>
<thead>
<tr>
<th>Tabla 1. Especies de aguas subtropicales superficiales o aguas oceánicas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atún de aleta amarilla</td>
</tr>
<tr>
<td>Aguillita</td>
</tr>
<tr>
<td>Barrillete negro, melva</td>
</tr>
<tr>
<td>Dorado o perico</td>
</tr>
<tr>
<td>Merlín rayado</td>
</tr>
<tr>
<td>Merlín negro</td>
</tr>
<tr>
<td>Pez volador</td>
</tr>
<tr>
<td>Pez volador</td>
</tr>
<tr>
<td>Pez españa</td>
</tr>
<tr>
<td>Tiburón azul</td>
</tr>
<tr>
<td>Tiburón martillo</td>
</tr>
<tr>
<td>Tiburón zorro</td>
</tr>
<tr>
<td>Tiburón diamante</td>
</tr>
<tr>
<td>Peces</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Barbudo</td>
</tr>
<tr>
<td>Barracuda</td>
</tr>
<tr>
<td>Barrugata</td>
</tr>
<tr>
<td>Cardenal</td>
</tr>
<tr>
<td>Castañuela</td>
</tr>
<tr>
<td>Chula</td>
</tr>
<tr>
<td>Chulita</td>
</tr>
<tr>
<td>Damisela franca blanca</td>
</tr>
<tr>
<td>Damisela dos colores</td>
</tr>
<tr>
<td>Diente sable</td>
</tr>
<tr>
<td>Doncella</td>
</tr>
<tr>
<td>Espejo</td>
</tr>
<tr>
<td>Falso volador</td>
</tr>
<tr>
<td>Fortuno</td>
</tr>
<tr>
<td>Jorobado</td>
</tr>
<tr>
<td>Cociñero</td>
</tr>
<tr>
<td>Mero</td>
</tr>
<tr>
<td>Merito rojo</td>
</tr>
<tr>
<td>Machete de hebra</td>
</tr>
<tr>
<td>Pardo</td>
</tr>
<tr>
<td>Palometa</td>
</tr>
<tr>
<td>Peje blanco</td>
</tr>
<tr>
<td>Pez aguja</td>
</tr>
<tr>
<td>Pez corneta</td>
</tr>
<tr>
<td>Pez mariposa</td>
</tr>
<tr>
<td>Pez mariposa</td>
</tr>
<tr>
<td>Pez ignana</td>
</tr>
<tr>
<td>Pez pluma</td>
</tr>
<tr>
<td>Pez sargento</td>
</tr>
<tr>
<td>Raya basha</td>
</tr>
<tr>
<td>Raya mariposa</td>
</tr>
<tr>
<td>Raya manta</td>
</tr>
<tr>
<td>Sargo</td>
</tr>
<tr>
<td>Unicoroio, pez lija</td>
</tr>
<tr>
<td>Tamborín</td>
</tr>
<tr>
<td>Tamborín</td>
</tr>
<tr>
<td>Vieja ariquín</td>
</tr>
<tr>
<td>Vieja colorada</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crustáceos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cangrejo</td>
</tr>
<tr>
<td>Jaiba</td>
</tr>
<tr>
<td>Jaiba</td>
</tr>
<tr>
<td>Langostino títí</td>
</tr>
<tr>
<td>Langosta</td>
</tr>
<tr>
<td>Cangrejo araña</td>
</tr>
</tbody>
</table>

Deberá observar durante el presente otoño con el desfase correspondiente; en todo caso, es previsible que podría estar afectado por la máxima anomalía que se ha observado entre diciembre y enero.

En cuanto a la sardina, se observa una mayor disponibilidad de juveniles, que sugiere un futuro incremento poblacional, dado que es conocido que frente a condiciones tropicales esta especie presenta una mejor adaptabilidad al sistema (Zuzunaga, 1985). En cuanto al desove del verano, los índices

<table>
<thead>
<tr>
<th>Variable</th>
<th>Año frío</th>
<th>Año El Niño</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMB C C P</td>
<td>Intensa</td>
<td>Retraida</td>
</tr>
<tr>
<td>B I E N T E C S E</td>
<td>Retraida</td>
<td>Intensa</td>
</tr>
<tr>
<td>C C S C</td>
<td>Retraida</td>
<td>Intensa</td>
</tr>
<tr>
<td>C S A</td>
<td>Intensa</td>
<td>Retraida</td>
</tr>
</tbody>
</table>

Afloramientos

<table>
<thead>
<tr>
<th>R E C U R S O S</th>
<th>Pelágicos</th>
<th>Dispersión</th>
<th>Concentración</th>
</tr>
</thead>
<tbody>
<tr>
<td>(anchoveta, sardina)</td>
<td>Baja (q), Baja (F), Alta (M)</td>
<td>Alta (q), Alta (F), Baja (M)</td>
<td></td>
</tr>
<tr>
<td>(merluza y otros)</td>
<td>Alta (q), Alta (F), Alta (M)</td>
<td>Disminución poblacional</td>
<td></td>
</tr>
<tr>
<td>Litorales (c. abanico, langostinos)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Litorales (machas, choros, cangrejos)</td>
<td>Aumento poblacional</td>
<td>Disminución poblacional</td>
<td></td>
</tr>
</tbody>
</table>

q = Capturabilidad
F = Tasa Instantánea de Mortalidad por Pesca
M = Tasa Instantánea de Mortalidad Natural
Z = F + M (Tasa Instantánea de Mortalidad Total)

CCP = Corriente Costera Peruana
CSE = Corriente Sur-Ecuatorial
CCSC = Contracorriente Subsuperficial de Cromwell
CSA = Corriente SubAntártica

gonadosomáticos son significativamente altos, mientras que en la primavera han estado alrededor del promedio.

El jurcel y la caballa estuvieron más disponibles, sobre todo en la fracción final del año coincidentemente con la acentuación de la anomalía térmica. Este comportamiento es similar al observado en otros eventos “El Niño”.

En general, se sabe que eventos cálidos favorecen a la población de merluza, pues condicionan su dispersión evitando su extracción; asimismo, se postula que “El Niño” disminuiría la mortalidad natural por canibalismo (Espino y Castillo, 1992).

Por otro lado, si relacionamos este fenómeno “El Niño”, con los acaecidos durante 1972-1973 y 1982-1983, es necesario mencionar que desde el punto de vista ecológico se plantean algunas diferencias que podrían ser útiles en el análisis.

Si continuamos con las analogías, nos daremos cuenta que existen curiosas diferencias que valen destacar. Es el caso del choro (Aulacomya ater), que durante 1972-1973 sus desembarques aumentaron significativamente y, en 1982-1983, los mismos disminuyeron a cifras mínimas hacia finales de 1983. En lo que va de este evento los desembarques de esta especie se han mantenido alrededor de 400 t mensuales. Algo similar ha sucedido con los desembarques de cangrejos y chankes.

Agradecimiento: Un especial reconocimiento a los profesionales y directivos de la DGIRH del IMARPE por habermelo facilitado la información que ha permitido el análisis que se presenta en este documento.

LITERATURA CITADA

