Tratamiento pulpar en la apexificación del diente inmaduro mediante agregado de trióxido mineral

Treatment of the pulp of the immature tooth apexification with Mineral Trioxide Aggregate

Resumen
Este artículo revisa las publicaciones sobre el Agregado Trióxido Mineral (MTA) para el uso y aplicación en los tratamientos pulpares de los dientes permanentes jóvenes (ápices inmaduros), como la apexificación. Inicialmente el cemento de MTA fue empleado para resolver complicaciones de perforaciones radiculares, así como obturaciones retrógradas, además de poseer características que lo diferencian del cemento Portland. En la elección del tipo de tratamiento de lesiones pulpares de dientes vitales y no vitales, se revisa el proceso de rizogénesis desde el punto de vista embriológico, los diferentes estudios de desarrollo radicular y apical del diente inmaduro, comparándolo con la clasificación de calcificación del estado de Nolla. Por lo que, la apexificación es una alternativa de tratamiento muy usada para la pulpa no vital, siendo el Hidróxido de calcio y el MTA los materiales comúnmente usados y que posteriormente, cuando exista formación del nuevo tejido para el cierre apical, se ejecutará el tratamiento de endodoncia convencional con gutapercha.

Abstract
This article reviews main publications about Mineral Trioxide Aggregate (MTA) for its use and application in dental pulp treatments for young permanent teeth (immature apices) such as apexification. First, MTA cement was used to resolve a complication of root perforations, as well as retrograde fillings. Besides, it has features that differentiate it from Portland cement. For choosing treatment for pulpal injury in non-vital and vital teeth, we review root formation process from embryological point of view, different stages of root and apical development the immature tooth, comparing them to Nolla’s stage classification of calcification. Therefore, apexification is a widely used alternative treatment for non-vital pulp, being calcium hydroxide and MTA materials the most common election. Afterwards, when there is formation of new tissue for apical closure, conventional root canal treatment will be performed.

Introducción
El diente permanente recién erupcionado, lo hace con una formación radicular incompleta (ápice abierto) y se le denomina diente inmaduro o permanente joven. La pulpa dental, es necesaria para la formación de dentina y al instalar una patología pulpar, conlleva a la interrupción de la formación normal de la raíz, desarrollándose parodas delgadas y propensas a la fractura. Por lo tanto, se debe mantener la vitalidad pulpar y lograr su desarrollo radicular completo (apexogénesis), pero cuando el tejido pulpar sufre un proceso degenerativo o necrosis, el tratamiento de elección, es la inducción del cierre apical (apexificación).4

El Agregado Trióxido Mineral (MTA), es un material cuyas características principales son: Biocompatibilidad, baja solubilidad, radiopacidad mayor que la dentina, buen sellado a la microfotografía y buena adaptación marginal.24-28 Las propiedades del MTA se han valorado in vitro e in vivo, pero aún no existen investigaciones a largo plazo; a corto plazo este material resulta muy prometedor para determinadas indicaciones.14-20 Por lo cual, el presente trabajo tiene como objetivo, brindar conocimientos actualizados al odontólogo de práctica general, en el uso del agregado trióxido mineral (MTA), para el tratamiento pulpar de dientes permanentes con ápice inmaduro.

Material y métodos
Para la realización del presente trabajo, se revisó, analizó y sintetizó el material proveniente de la búsqueda bibliográfica, odontología basada en evidencia, de los últimos 15 años, utilizando buscadores Pub Med, Medline y Lilacs, los artículos seleccionados, fueron en idioma inglés, español y portugués. Mientras que la búsqueda manual de los textos proceden de los últimos 16 años, en español. Se incluyeron estudios prospectivos, longitudinales y de experimentación entre ellas (tesis, journals, revistas) además de manuales y monografías universitarias, totalizando 19 publicaciones: 17 artículos, del período 1995-2007 y revisión de 3 textos, del periodo 1992-2003. Las presentes publicaciones contaron con el registro ISSN.

Cemento de MTA (agregado Trióxido Mineral)
El MTA, es un polvo de partículas finas hidrofílicas, que endurecen en presencia de humedad, el resultado es un gel coloidal que solidifica en una estructura dura en menos de 4 horas.4 Las características apropiadas del agregado, dependen del tamaño de las partículas, la proporción polvo-agua, temperatura, presencia de humedad y aire comprimido.2
Formación de la raíz

La dentina está compuesta por células pulpares y el cemento por células del ligamento periodontal. En la formación radicular, la vaina epitelial de Hertwig, que es una estructura que resulta de la fusión del epitelio interno y externo del órgano del esmalte en el asa cervical o borde genético, desempeña un papel fundamental como inducitor y modeladora de la raíz del diente. Ésta, prolifera en profundidad e induce a la papila para que se diferencien en la superficie los odontoblastos radiculares y en el lado de la membrana periodontal, las células del folículo dental son inducidas y diferenciadas para convertirse en células de la membrana periodontal (cementoblastos, fibroblastos y osteoblastos).13

Fig. 1. Invaginación de la papila dentaria.

Fig. 2. Vista de un ápice inmaduro y del periodonto.

Clasificación del desarrollo radicular y apical

Patterson en 1958 publicó una clasificación muy didáctica de los dientes permanentes según su desarrollo radicular y apical dividiéndolos en cinco grados:14

Grado 1.- Desarrollo parcial de la raíz con lumen apical mayor que el diámetro del conducto. Desarrollo radicular hasta la mitad de su longitud total. ápice abierto en embudo. Transición hacia el estadio 8.

Grado 2.- Desarrollo casi completo de la raíz con lumen apical mayor que el conducto. Desarrollo radicular de 2/3 de su longitud y ápice de paredes paralelas. El conducto radicular tiene la forma de trombón o trabuco (Estadio 8 de Nolla).

Grado 3.- Desarrollo completo de la raíz con lumen apical de igual diámetro que del conducto. Desarrollo radicular de ¾ de su longitud. ápice de paredes paralelas. Transición hacia el estadio 9.

Grado 4.- Desarrollo completo de la raíz con diámetro apical más pequeño que el del conducto. Desarrollo radicular completo. ápice abierto. El conducto tiene la forma cilíndrica. (Estadio 9).

Grado 5.- Desarrollo completo de la raíz con tamaño microscópico apical. El conducto presenta la forma cónica de la pieza adulta. Después de Raíz con 3 años, se forma la unión cementodentinaria cierre apical (Estadio 10).

Fig. 3. Raíz 3/3

Fig. 4. Raíz 2/3

Fig. 5. Raíz 3/4

Fig. 6. Raíz Completa

Fig. 7. Raíz Con cierre especial

Las figs. fueron tomadas de Discacciati.14

Patología pulpar y periapical del diente incompletamente formado

La caries dental, el traumatismo o el mal empleo de alguna sustancia química, son causas frecuentes de lesión pulpar. Simón y col. define a la lesión
pulpar reversible como la primera respuesta inflamatoria con capacidad reparativa, frente a diversos irritantes. Si la pulpa inflamada, reacciona frente a los estímulos térmicos, habitualmente el frío, con una respuesta de hiper sensibilidad rápida, que cesa tan pronto desaparece el estímulo, es aguda; si la lesión es de predominio crónico y la inflamación se circunscribe a la base de los túbulos afectados, si el irritante es eliminado o se evita nuevas agresiones mediante el sellado de los túbulos dentinarios, ésta recupera un estado asintomático. Por el contrario si la inflamación persiste, los síntomas se pueden prolongar por tiempo indefinido, hacerse más extensas y conducir a la pulpitis irreversible, que es la inflamación pulpar sin capacidad de recuperación, a pesar de que cesen los estímulos provocados, la pulpa no cicatrizará y poco a poco degene rará en una necrosis, originando problemas especiales como detección del crecimiento longitudinal de la raíz, por lo que occasionala una mala relación corona-raíz.15

La necrosis pulpar es la descomposición, séptica o no, del tejido conjuntivo pulpar que cursa con la destrucción del sistema microvascular y linfático de las células y, en última instancia de las fibras nerviosas. La inflamación perirradicular, tal vez no se desarrolle, sino hasta que la pulpa este casi completamente necrótica, a veces, hay pulpa vital inflamada y pulpa radicular histológicamente normal pero con signos radiográficos de inflamación perirradicular; sin embargo, aunque no se ha demostrado experimentalmente, los factores irritantes deben difundirse desde los tejidos coronales, pasar a través de la pulpa radicular y desencadenar una respuesta inflamatoria perirradicular con resorción reactiva. Esta entidad clínica suele observarse en niños, adolescentes o adultos jóvenes y pueden plantear problemas en el diagnóstico.7

Terapia pulpar en dientes con ápices inmaduros

- Recubrimiento Pulpar Indirecto
- Recubrimiento Pulpar Directo
- Pulpotomía

Procedimiento clínico de la Apicoformación (Apexificación) utilizando MTA

El procedimiento clínico recomendado por Torabinejad y Chivian, es el siguiente:

En la primera cita después de anestesiar, aislarse de goma y, preparar un acceso adecuado, el o los conductos radiculares se deben desinfectar, utilizando instrumentos e irrigación con cloro o sodio o con clorhexidina, para luego colocar el hidróxido de calcio como medicamento intracanal durante 7 a 14 días. En la segunda cita eliminamos el hidróxido de calcio con irrigación profusa en el conducto radicular y se seca con puntas de papel absorbente, luego se prepara la mezcla el polvo del MTA con agua estéril y se transporta al conducto con un porta amalgama grande o messing gun y se condensa suavemente con condensadores o puntas de papel creando un tapón apical de MTA de 3 a 4 mm y se comprueba su extensión radiográficamente. Si la obturación de la barrera apical falla en el primer intento, lavar el MTA con agua estéril y repetir el procedimiento. Si ésta barrera apical ya es apropriada se coloca una torunda de algodón húmedo en el conducto y cerrar el acceso preparado de la cavidad con un material de restauración temporal. En la tercera cita se retira el material temporal o provisional por lo menos de 3 a 4 horas después. Obtener el resto del conducto con gutapercha o con resina en dientes con paredes delgadas, como está indicado y sellar la cavidad de acceso con una restauración definitiva. Evaluar y valorar la cicatrización perirradicular clínica y radiográficamente.1,4,6

Discusión

En los 60's, Cooke y col., comprobaron que los ápices inmaduros de dientes con pulpa necrótica podrían continuar su desarrollo después de colocar una cura temporal de una pasta de oxido de zinc y eugenol. Otros autores, sugieren que las enzimas del tejido de granulación promueven la calcificación del conducto con la previa eliminación de los irritantes presentes, a pesar de una infección apical, la invaginación periodontal dentro del conducto puede ayudar secundariamente a la formación de neocemento.17

Tittle y col.(1996), estudió la efectividad del MTA, como barrera de obturación apical, con capacidad para estimular el cierre apical de tres factores de crecimiento óseo, concluyendo que los factores de crecimientos óseos juegan un papel importante en la formación y resorción ósea, pero sus efectos en un área inflamada son escasamente conocidos, mientras donde se utilizó MTA las lesiones eran significativamente más pequeñas, por lo que, se puede utilizar en una sola sesión en dientes con ápice abierto y además de inducir la formación de una barrera calcificada, puede reducir el tiempo del tratamiento considerablemente.12 Sin embargo, Banchs y Trope, aplicaron una nueva alternativa para la revascularización de dientes permanentes inmaduros con periodontitis apical, ellos realizaron la desinfección del conducto sin instrumentación mecánica solo con una irrigación copiosa y la combinación de tres antibióticos; después de que el protocolo de desinfección es completado, el ápice es irrigado mecánicamente para iniciar un sangramiento en el conducto radicular y producir un coágulo de sangre al nivel de la unión cemento-emalete, el cual actúa como una matriz de crecimiento de un nuevo tejido dentro del espacio pulpar similar a la pulpa necrótica después de un traumatismo o infección. Luego se realiza un sellado profundo del acceso coronario con Cavit® (ESPE, seefeld, Germany) y MTA.12

Hong y col. (1995), evidenció el efecto antibacteriano del MTA, sobre algunas bacterias, luego se comprobó, que posible un mayor efecto sobre Lactobacillus sp, Streptococcus nitis, Streptococcus mutans, y Streptococcus salivarius y un menor efecto antibacteriano en Streptococcus faecalis, corroborando lo estudiado, por Al-Kahtani y col., donde evaluaron la capacidad de sellado del MTA, in vitro, en diferentes espesores colocados en dientes como retro obturación, demostrando que el espesor ideal fue de 5mm debido a que se evitó completamente la filtración bacteriana.13 Asimismo, Shabahang y col., compararon la eficacia de la proteína osteogénesis (Op-I), el MTA y el Hidróxido de calcio, cuando son utilizados para promover la formación de tejido duro e inductor el cierre apical de dientes con ápice inmaduros de perros. Después de 12 semanas según el examen histológico de las muestras
tratadas con MTA demostraron que 13 de 14 (93% de raíces tratadas con este material tenían un cierre apical con la formación de una barrera calcificada en las secciones estudiadas; por el contrario, sólo 5 (38.5%) de 13 raíces tratadas con hidróxido de calcio y OP-I exhibieron un cierre apical. Sin embargo, las raíces tratadas con MTA y OP-I indujeron un área de formación de tejido duro que fue una ventaja en ambos sobre los dientes tratados con hidróxido de calcio16.

Conclusiones

Los efectos del MTA en áreas inflamadas son escasamente conocidas, donde se utilizó MTA, las lesiones eran significativamente más pequeñas, por lo que, se puede utilizar como material de obturación en una sola sesión. Mientras que los factores de crecimiento juegan un papel importante en la formación y resorción del tejido óseo.

A diferencia de las técnicas convencionales de apicoformación, el uso de MTA busca crear una barrera rígida contra la que se pueda compactar el material de obturación sin tener que esperar la formación de la barrera de osteocemento y a su vez induce la formación de dicha barrera después de finalizado el procedimiento.

A corto plazo, este material resulta muy prometedor, es un material biocompatible, adecuada capacidad de sellado, baja solubilidad, efectos antimicrobianos, induce la formación de tejido duro y facilita la regeneración del ligamento periodontal. Mientras que, a largo plazo este procedimiento puede fracasar al fallar el tratamiento restaurador, por lo tanto, las evaluaciones periódicas son cada 3 meses. Es por ello que algunos autores recomiendan técnicas de refuerzo intracoronario radicular con resinas adhesivas de última generación con la finalidad de aumentar criterios de resistencias en la reconstrucción de estos dientes, tal es el caso de espigas de plásticos transparentes denominadas Luminex (dentaus USA,Nueva York, NY) que al permitir la transmisión de la luz a través del conducto radicular se consigue el curado de toda la resina.

Referencias bibliográficas

Fecha de recepción: 15 abril 2009
Fecha de aceptación: 10 julio 2009