Bacillus thuringiensis para controlar larvas de mosquitos culicídos en Sullana, Piura, 1987

Edgar Montalván-Santillán

RESUMEN

MONTALVAN E. 1989. *Bacillus thuringiensis* para controlar larvas de mosquitos culicídos en Sullana, Piura, 1987. Rev. per. Ent. 32. — En la Laguna El Salitral, 4°52’S y 80°44’W, durante junio y julio 1987, se probó la efectividad de *B. thuringiensis* serotipo H-14 var. *israelensis* sobre las larvas de los mosquitos Culicidae *Anopheles albimanus*, *Culex nigripalpus* y *Aedes scapularis*. Se utilizó Vectobac-AS líquido 600 ITU/mg, 0.6% i.a. y Vectobac-G granulado 200 ITU/mg, 0.2% i.a. Los resultados obtenidos permiten recomendar este bio-insecticida por su buena efectividad y su inocuidad para otras especies de organismos acuáticos.

SUMMARY

MONTALVAN E. 1989. *Bacillus thuringiensis* to control culicid mosquitoes larvae in Sullana, Piura, Peru, 1987. Rev. per. Ent. 32. — In the pond El Salitral, 4°52’S and 80°44’W, during June and July 1987, the effect of *B. thuringiensis* serotype H-14 var. *israelensis* against larve of the culicid mosquitoes *Anopheles albimanus*, *Culex nigripalpus* and *Aedes scapularis* was proved. The products used were Vectobac-AS liquid 600 ITU/mg, 0.6% i.a. and Vectobac-G, granulated 200 ITU/mg, 0.2% i.a. The results obtained permit to recommend this bio-insecticide because its good larvicidal action and its harmless effect against other aquatic organisms.

Key words: *B. thuringiensis*, malaria, *Anopheles*, *Culex*, *Aedes*, bioinsecticides.

INTRODUCCION

Objetivo

El objetivo del trabajo ha sido evaluar la acción del *Bacillus thuringiensis* serotipo H-14 var. *israelensis* (B.t.i. H-14), caracterizada por su elevada especificidad, baja toxicidad en mamíferos y organismos acuáticos. Se ensayaron las formulaciones líquida y granulada, como alternativa en el control de larvas de mosquitos, en la localidad El Salitral, provincia de Sullana, departamento de Piura.

Area de trabajo

El distrito El Salitral está situado a 5 km nordeste de la ciudad de Sullana, 85 msnm, 4°52’S, y 80°44’W. Su clima es cálido durante todo el año, con disminución de la temperatura en el período junio-agosto. La actividad es eminentemente agrícola con cultivos de arroz y panllevar.

Al inicio de los ensayos, durante la primera quincena de junio, los promedios de temperatura a las 8:00, 14:00 y 20:00 horas fueron de 22.0, 29.0 y 24.0°C; y la humedad relativa correspondió a 82, 67 y 77% respectivamente.

La Laguna Salitral se halla a 1.00 km del poblado, tiene aproximadamente 6.00 hectáreas de superficie y 30.000 m³ de capacidad. Es permanente y está alimentada por la filtración del agua de riego de los sembríos de la parte alta y también directamente del río Chira. La cooperativa local la utiliza como reservorio para el riego de áreas de cultivo de la parte baja.

El agua es de aspecto claro, limpio y fresco, con materia orgánica o detritos en el fondo, con pH 6.7 a 7.0 y 20°C como temperatura promedio. Desarrollan algas, plantas flotantes (*Pistia*), plantas emergentes (junco, totora, gramalote, grama salada, grama dulce), plantas semieléctricas y leñosas (pájaro bobo y algarrobo).

Entre las aves son frecuentes la garza blanca, martín pescador. Existen peces y anfibios. Los vacunos, caprinos y ovinos llegan a pastar o abrevar.

Entre los invertebrados existen moluscos, arácnidos e insectos diversos, entre los que destacan chinches belostómidos, gérmenes, notonéctidos; coleópteros acuáticos como ditícidos e hidrofilidos además de odonatos y otros.

Esta laguna constituye un excelente hábitat para el desarrollo de mosquitos culicídos. Allí existen tres especies: *Anopheles albimanus*, de importancia en la transmisión de malaria; *Culex nigripalpus* y *Aedes scapularis*, estos últimos relacionados con la transmisión de arbovirosis EEV (encefalitis equina venezolana) en esta parte del país.

MATERIAL Y MÉTODOS

El bio-insecticida utilizado fue el bioinsecticida Bacillus thuringiensis, serotipo H-14 variedad israelensis, producido comercialmente como VECTOBAC® por los laboratorios Abbott USA, en dos formulaciones:

- VECTOBAC-AS, líquido 600 ITU/mg de potencia (0.6% i.a.)
- VECTOBAC-G, granulado de 200 ITU/mg de potencia (0.2% i.a.)

Ensuyos de laboratorio

De la laguna se colectaron larvas III de Anopheles albimanus y larvas IV de Aedes scapularis. Se preparó una solución madre tomando 1.0 ml del producto comercial en un erlenmeyer aforado a 100 ml con agua destilada o con agua del mismo criadero previamente filtrada. A partir de la solución madre se prepararon las concentraciones 10 mg/L, 4 mg/L, 2 mg/L, 1 mg/L, sometiendo en cada concentración 15 a 20 larvas en cada prueba de susceptibilidad, según la especie.

El procedimiento que se ha seguido fue el establecido por la Organización Mundial de la Salud (OMS). Se dispuso de un control o testigo que contenía únicamente agua.

La observación de las pruebas se efectuó cada 4, 8, 12 horas y la lectura final del porcentaje de mortalidad se hizo a las 24 horas de exposición. En el caso de haber mortalidad en los controles, los resultados fueron ajustados mediante la fórmula de Abbott.

Ensuyos de campo

Se realizó un muestreo de la población larvaria, antes de la aplicación. Se utilizaron cacharones (Depper), tratando en lo posible de cubrir la mayor extensión del criadero tipo laguna, con el objeto de medir la densidad larval, determinar géneros y especies de mosquitos presentes en el área de ensayo y a su vez cuantificarlos por estados.

Se montó un laboratorio cerca al lugar de trabajo, con el fin de proceder a la crianza de larvas IV y pupas colectadas, obtener adultos y lograr su identificación. Simultáneamente se hizo el estudio de las larvas de IV estadio para determinar especies.

En horas matinales y vespertinas se efectuaron capturas de mosquitos adultos en la orilla de la laguna, utilizando atrayente humano y tubo aspirador de vidrio; esto con el fin de determinar las especies que se estuvieran desarrollando en el criadero natural, que era la laguna.

Para aplicar el Vetobac-AS (líquido) se seleccionó una hectárea (10,000 m²), donde se colocaron 40 marcas numeradas o puntos que servirían de referencia para la encuesta larvaria antes de cada aplicación y las evaluaciones respectivas.

El Vetobac-G (granulado) se aplicó en media hectárea (5,000 m²) separada de la anterior. Se hizo el marco de 22 puntos para la encuesta y evaluación (ver figs. 1 y 2).

Para tomar las muestras se utilizó el cacharón (Depper), en ambos casos. La muestra consistía en dos cacharonadas por cada punto, contabilizando los estadíos por especie y luego devolviéndolos al criadero.

El resto del área de la laguna-criadero ha servido como control o testigo.

Aplicación de Vetobac-AS (líquido)

Se aplicó 2 litros de Vetobac-AS por hectárea, utilizando una motomochila aspersora marca “Solo” de 12 litros de capacidad. Esta dosificación es la recomendada por la casa comercial, de acuerdo a la calidad del agua y estadíos larvales existentes.

Se preparó cuatro veces la motomochila, utilizando 0.5 litros de B.t.i. y añadiendo 11.5 L de agua para obtener los 12 L de dilución cada vez, totalizando así 48 L para cubrir una hectárea en cada tratamiento.

Teniendo en cuenta las especificaciones técnicas de los factores que influyen en la actividad biológica del B.t.i., tales como los rayos solares (luz ultravioleta) calidad y temperatura del agua, etc., se procedió a efectuar las aplicaciones a las 7:00 horas. A esa hora de la mañana los vientos son muy leves y favorecen una adecuada cobertura sobre la superficie hídrica.

El desplazamiento del operador durante la aplicación debe ser uniforme, manteniendo la boquilla en posición horizontal a la superficie acuática, de modo que las microgotas al caer por gravidad sean lo más correctamente distribuidas.

Se ha calculado que un operador puede cubrir una hectárea en dos horas aproximadamente.

Aplicación de Vetobac-G (granulado)

La media hectárea por aplicar se determinó en una franja de 100 m de largo por 50 de ancho. Se aplicó empleando la técnica manual al boleo, la cantidad de 5 kg de B.t.i. H-14, lo que hace una dosis de 10 kg/ha.

Según la dosis, corresponde distribuir 1 g de B.t. por 1.0 m².

El alcance de cobertura del operador fue de 3 m hacia adelante y 3 m hacia la izquierda desde un punto, empleando 9.0 g del producto biológico en cada 3 m de desplazamiento, cubriendo 9.0 m² en cada vez y así sucesivamente hasta el final.

Se diseñó un modelo de aplicación (fig. 2) donde I corresponde al punto inicial de la operación, la flecha horizontal indica la dirección que
sigue el aplicador y las flechas oblicuas, la cobertura con B.t.; de manera que en cada franja de 100 m de largo por 3.0 m de ancho se aplicará 300 g de bioinsecticida.

La destreza operativa del aplicador es un factor importante para una buena cobertura en la superficie de ensayo. Además, se requiere la asistencia de dos personas para el apoyo logístico (B.t.) ubicados en los niveles inicial y final de cada franja y que además dirigen el desplazamiento del operador. El tiempo promedio para cubrir el área de ensayo fue de 2:30 horas aproximadamente.

RESULTADOS Y DISCUSION

De los ensayos de laboratorio

La tabla 1 reúne los resultados de la acción de
B. thuringiensis sobre 75 larvas III de *Anopheles albimanus* y sobre 60 larvas IV de *Aedes scapularis*.

Comparando los efectos puede verse que la susceptibilidad de *Aedes* es mayor, pues ya a las 4 horas se registra mortalidad con las concentraciones de 2, 4 y 10 mg/L, la cual llega a 100% a las 8 horas. Con *Anopheles* la mortalidad 100% ocurre recién a las 12 horas y únicamente en la concentración más alta de 10 mg/L.
TABLA 1.—Resultados de las pruebas de susceptibilidad, en laboratorio, de larvas de mosquitos Culicidae, frente a Bacillus thuringiensis (Vectobac-AS(1), Localidad El Saltrol, Sullana-Piura. Junio 1987.

<table>
<thead>
<tr>
<th>Especie de mosquito y concentración del bio-insecticida</th>
<th>Porcentaje de mortalidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 hrs</td>
</tr>
<tr>
<td>Anopheles albimanus (75 larvas III) Control o testigo (agua pura) 1.0 mg/L</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2.0 mg/L</td>
</tr>
<tr>
<td></td>
<td>4.0 mg/L</td>
</tr>
<tr>
<td></td>
<td>10.0 mg/L</td>
</tr>
<tr>
<td>Aedes scapularis (60 larvas IV) Control o testigo (agua pura) 1.0 mg/L</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2.0 mg/L</td>
</tr>
<tr>
<td></td>
<td>4.0 mg/L</td>
</tr>
<tr>
<td></td>
<td>10.0 mg/L</td>
</tr>
</tbody>
</table>

(1) VectobacR—AS: 600 ITU/mg
(2) % mortalidad corregida por la fórmula de Abbott.

Estos resultados indican, siempre, la elevada efectividad del producto biológico sobre las larvas de los mosquitos en estudio.

Es importante resaltar que la acción del larvicida está en función al aprovechamiento de las esporas y crístales de la bacteria del medio acuático. El comportamiento de alimentación de las larvas varía según el género de mosquitos: mientras las larvas de Anopheles se alimentan preferentemente en la superficie, las de Culex y Aedes hacen tomando las partículas suspendidas en el agua y frecuentemente, las larvas de Aedes van al fondo del criadero para alimentarse.

De los ensayos de campo

Evaluación del Vectobac-AS (líquido)

La tabla 2 compara la efectividad de B. thuringiensis, formulación líquida, sobre Anopheles albimanus y Culex nigripalpus. Puede verse que desde las primeras horas de evaluación se aprecia una mayor mortalidad de larvas de Anopheles. El mayor número de estas larvas muertas corresponden a los tres primeros estados, quedando larvas IV y prepupas.

Este mayor impacto larvicida observado sobre los estados iniciales, se debe principalmente a la mayor actividad de estas larvas para la obtención de partículas alimenticias en la superficie acuática, donde los anófilos se alimentan. De esta manera, tanto los crístales como las esporas bacterianas son consumidos por estas larvas. En cambio, las larvas IV se alimentan más lentamente, por lo cual necesitan mayor tiempo para ingerir la cantidad suficiente que les ocasiona la muerte (dosis letal). Las pre-pupas cambian rápidamente al estado de pupa.

Las larvas que murieron presentaban necrosis en la región intestinal por efecto de la bacteria, compatible con lo observado en las pruebas de susceptibilidad en laboratorio.

Con respecto a Culex nigripalpus también se aprecia un efecto semejante sobre las larvas de los tres primeros estados, aunque son menores sus porcentajes de mortalidad.

La recuperación de la densidad larvaria se observó a las 72 horas, 6 días, después de la aplicación, para ambas especies de mosquitos. Se continuaron las evaluaciones durante una semana y se determinó que el Vectobac-AS inicia su acción efectiva después de 2 horas de haberse aplicado, su efecto residual es de 48 horas; y que la frecuencia de aplicación deberá ser semanal, con el objeto de mantener bajos índices de densidad de mosquitos (ver tabla 2).

Estos resultados nos permitieron también proyectar que las encuestas se deben efectuar semanalmente antes de cada tratamiento, con evaluaciones a las 4 y 24 horas siguientes, por un periodo de 6 semanas consecutivas. La acción del Vectobac-AS sobre Anopheles albimanus y Culex nigripalpus durante este periodo se muestra en la tabla 3.

Evaluación del Vectobac-G (granulado)

Se efectuaron dos aplicaciones, la primera al inicio de las operaciones de campo y la segunda, cuatro semanas después. Los resultados se presentan en la tabla 4, evaluándose los aspectos sobre las tres especies de mosquitos: An. albimanus, C. nigripalpus y Aedes scapularis.

Llama la atención que en la encuesta larvaria antes del segundo tratamiento y después de 4 semanas, no se encontró ningún estado larval de Aedes en el área de estudio, mientras que Anopheles y Culex mantenían densidades elevadas y en todos los estudios. Este fenómeno, aparentemente de extinción, observado después de la primera aplicación de Vectobac-G, también fue observado en el área tratada con Vectobac-AS.

Intentaremos dar una posible explicación a estos diversos resultados.

Primero, sabemos que la concentración del granulado es de 200 ITU/mg y el de la formulación líquida es de 600 ITU/mg. En la formulación granulada existen gránulos que flotan y gránulos que se hunden, de manera que los gránulos que flotan se desvuelven liberando los crístales y esporas bacterianas que son ingeridos por las larvas de Anopheles albimanus.

Por otro lado, las características de alimentación de Culex nigripalpus sitúan a la larva suspen-
TABLA 2.— Evaluación de campo referida a la efectividad de Bacillus thuringiensis H-14, Vectobac-AS\(^{(1)}\) y su acción residual sobre larvas de mosquitos Culicidae. Valle Chira Medio, Sullana-Piura. Junio 1987.

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Encuesta Larvaria</th>
<th>Evaluación por horas</th>
<th>Anopheles albinus</th>
<th>Culex nigripalpus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total larvas</td>
<td>% Mort.</td>
</tr>
<tr>
<td>27.05.87</td>
<td>Pre-aplicación</td>
<td>2 hrs</td>
<td>269</td>
<td>98.0</td>
</tr>
<tr>
<td>28.05.87</td>
<td>Post-aplicación</td>
<td>6 hrs</td>
<td>98.5</td>
<td>—</td>
</tr>
<tr>
<td>28.05.87</td>
<td>Post-aplicación</td>
<td>12 hrs</td>
<td>99.6</td>
<td>—</td>
</tr>
<tr>
<td>29.05.87</td>
<td>Post-aplicación</td>
<td>24 hrs (1 día)</td>
<td>100.0</td>
<td>—</td>
</tr>
<tr>
<td>30.05.87</td>
<td>Post-aplicación</td>
<td>48 hrs (2 días)</td>
<td>100.0</td>
<td>—</td>
</tr>
<tr>
<td>31.05.87</td>
<td>Recuperación de la densidad</td>
<td>72 hrs (3 días)</td>
<td>140</td>
<td>52.0</td>
</tr>
<tr>
<td>01.06.87</td>
<td>larvaria</td>
<td>96 hrs (4 días)</td>
<td>175</td>
<td>65.0</td>
</tr>
<tr>
<td>02.06.87</td>
<td></td>
<td>120 hrs (5 días)</td>
<td>190</td>
<td>71.4</td>
</tr>
<tr>
<td>03.06.87</td>
<td></td>
<td>144 hrs (6 días)</td>
<td>188</td>
<td>70.0</td>
</tr>
</tbody>
</table>

(1) VECTOBAC\(^8\)-AS: Formulación líquida de 600 ITU/mg; (aplicación: 2 lt x ha)
(2) Recuperación larvaria de mosquitos respecto a la población encuestada antes de la aplicación de Vectobac\(^8\)

...dida de la superficie acuática, fijándose por medio del tubo respiratorio y manteniéndose con la cabeza hacia abajo. Si consideramos que el grupo de gránulos que flotan son consumidos por los anofelinos, quedará poca cantidad disponible para los culícidos, pues una gran parte de los cristales y esporas continúan hundiéndose hacia el fondo.

TABLA 3.— Resultado del ensayo de campo con Bacillus thuringiensis H-14, Vectobac-AS\(^{(1)}\) sobre larvas de mosquitos Culicidae, durante seis semanas. Valle Chira Medio, Sullana-Piura. 27 Mayo a 3 Julio 1987.

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Encuesta Larvaria</th>
<th>N° de Aplicación</th>
<th>Evaluación por horas</th>
<th>Anopheles albinus</th>
<th>Culex nigripalpus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total larvas(^{(2)})</td>
<td>% Mortalidad</td>
</tr>
<tr>
<td>27.05.87</td>
<td>Pre-aplicación</td>
<td>Primera</td>
<td>4 hrs</td>
<td>269</td>
<td>99.0</td>
</tr>
<tr>
<td>28.05.87</td>
<td>Post-aplicación</td>
<td>Segunda</td>
<td>4 hrs</td>
<td>191</td>
<td>92.0</td>
</tr>
<tr>
<td>29.05.87</td>
<td>Post-aplicación</td>
<td>Tercera</td>
<td>24 hrs</td>
<td>191</td>
<td>92.0</td>
</tr>
<tr>
<td>03.06.87</td>
<td>Pre-aplicación</td>
<td>Cuarta</td>
<td>4 hrs</td>
<td>191</td>
<td>92.0</td>
</tr>
<tr>
<td>04.06.87</td>
<td>Post-aplicación</td>
<td>Quinta</td>
<td>24 hrs</td>
<td>191</td>
<td>92.0</td>
</tr>
<tr>
<td>10.06.87</td>
<td>Pre-aplicación</td>
<td>Sexta</td>
<td>4 hrs</td>
<td>191</td>
<td>92.0</td>
</tr>
<tr>
<td>11.06.87</td>
<td>Post-aplicación</td>
<td></td>
<td>24 hrs</td>
<td>191</td>
<td>92.0</td>
</tr>
<tr>
<td>12.06.87</td>
<td>Post-aplicación</td>
<td></td>
<td></td>
<td>191</td>
<td>92.0</td>
</tr>
</tbody>
</table>

(1) VECTOBAC\(^8\)-AS: Formulación líquida de 600 ITU/mg; (aplicación: 2 lt x ha)
(2) Total Larvas: De I a IV estadio

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Encuesta Larvaria</th>
<th>Evaluación por horas</th>
<th>Anopheles albinanus</th>
<th>Culex nigripalpus</th>
<th>Aedes scapularis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nº Larvas</td>
<td>% Mort.</td>
<td>% Recup.(2)</td>
</tr>
<tr>
<td>01.06.87</td>
<td>Pre-aplicación</td>
<td>—</td>
<td>476</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>02.06.87</td>
<td>Post-aplicación</td>
<td>4 hrs</td>
<td>99.0</td>
<td>—</td>
<td>52.0</td>
</tr>
<tr>
<td>03.06.87</td>
<td>Post-aplicación</td>
<td>24 hrs (1 día)</td>
<td>100.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>04.06.87</td>
<td>Post-aplicación</td>
<td>48 hrs (2 días)</td>
<td>8</td>
<td>5.0</td>
<td>—</td>
</tr>
<tr>
<td>02.07.87</td>
<td>Pre-aplicación</td>
<td>—</td>
<td>600</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>03.07.87</td>
<td>Post-aplicación</td>
<td>4 hrs</td>
<td>99.0</td>
<td>—</td>
<td>11.5</td>
</tr>
<tr>
<td>04.07.87</td>
<td>Post-aplicación</td>
<td>24 hrs (1 día)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(1) VECTOBAC®-G: Formulación granulada de 200 UTI/mg; (aplicación: 5 kg x 0.3 ha)
(2) Recuperación de la densidad larvaria respecto a la población inicial pre-aplicación.

Las larvas de *Aedes scapularis* se alimentan mayormente en el fondo, lugar en el cual se acumulan, por gravedad, los cristales y esporas de *B. thuringiensis*. Esto nos induce a explicar, de esta manera, el mayor efecto larvicida sobre *Aedes*, teniendo en cuenta, además, que esta bacteria no se recicla en el medio acuático. También podría haber ocurrido una variación estacional de la población de esta especie, disminuyendo notoriamente. Es necesario profundizar esta observación en otro período.

No se ha observado efecto de B.t. sobre huevos ni pupas de mosquitos.

Efecto de B. thuringiensis sobre otros organismos acuáticos

No se ha observado efecto de este bioinsec- ticida sobre otros insectos, ni sobre arácnidos ni moluscos.

Igualmente no se observó efecto dañino so- bre peces ni anfibios, ni sobre ganado, ni tampoco sobre la flora acuática.

No se registró ningún rastro de intoxicación en humanos por el consumo de peces obtenidos de la laguna, en forma permanente y normal durante el período de tiempo que duró el experimento.

No se ha registrado ninguna manifestación o reacción de tipo alérgico ni dérmica por nuestra permanencia dentro del área tratada durante largos periodos de tiempo, ni por el manipuleo del producto.

CONCLUSIONES Y SUGERENCIAS

1. Se ha evaluado la acción biolarvicida del Bacillus thuringiensis var. israelensis, ser H-14 (B.t.i. H-14), producido comercialmente por Abbott Laboratories en formulación líquida de 600 ITU/mg y en formulación granulada de 200 ITU/mg, demostrándose su elevada especificidad para el control de larvas de mosquitos, con resultados satisfactorios.

2. En los ensayos de laboratorio, se ha utilizado el Vectobac líquido sobre larvas de *Anopheles albinanus* y *Aedes scapularis*, obteniendo excelentes resultados. Sin embargo, se debe resaltar la mayor eficacia observada sobre *Aedes*. Indudablemente, esto obedece al hábito de alimentación que tiene esta especie, aprovechando el producto que se deposita en el fondo del recipiente.

3. En los ensayos de campo, ha resultado eficaz, eficiente y efectivo el control de larvas de *Anopheles albinanus* y *Aedes scapularis* con Vectobac líquido y granulado; y en las concentraciones utilizadas. En cambio, con la especie *Culex nigripalpus*, la formulación líquida resultó más efectiva que la granulada. Es necesario profundizar la investigación en esta especie.

4. Se determinó, mediante las evaluaciones continuas que el efecto larvicida se inicia poco después de la aplicación del producto, ocurriendo dos horas más tarde, elevado porcentaje de mortalidad y a las 24 horas alrededor del 100% de mortalidad. El efecto residual se mantiene.
hasta las 48 horas (2 días) y al sexto día aparecen larvas de III estadio, indicándonos que la frecuencia de aplicaciones debe ser semanal.

5. También se ha demostrado la inocuidad del *Bacillus thuringiensis* sobre los organismos acuáticos, tales como aves, peces, artrópodos, moluscos, marsíferos (vacuno, caprino, ovino) y sobre el hombre.

Además, no afecta la flora acuática ni contaminara el medio ambiente.

6. De acuerdo a los resultados obtenidos, el biolarvicida Vectobac se presenta como una excelente alternativa para el control de larvas de *Anopheles albimanus*, importante vector de la malaria; de *Culex quinquefasciatus* y *Aedes scapularis* especies relacionadas en la transmisión de arbovirus (Encefalitis Equina Venezolana-EEV), en esta área.

7. Para un control eficiente y efectivo, se debe aplicar el Vectobac en forma simultánea en los principales focos generadores de mosquitos cercano a las localidades en riesgo. Esta operación, se debe realizar en los meses de mayor incidencia de mosquitos y consecuentemente de mayor incidencia de malaria (enero-febrero-marzo), preferentemente en horas matinales y vespertinas. Un hombre bien adiestrado puede cubrir con la motopulverizadora 4 hectáreas diarias.

Agradecimiento

Fue fundamental la ayuda de Abbott Laboratories y Matías Gilmermeister S.A., quienes brindaron los productos. La colaboración y apoyo del personal de la Unidad Territorial de Salud (UTES) en Sullana, del Programa Nacional de Malaria ha sido decisivo. El Dr. Pedro G. Aguilar F. revisó íntegramente el manuscrito y efectuó el trabajo editorial. A todos ellos mis sinceras gracias por permitir la realización y publicación del presente trabajo.

Referencias de Literatura